Please wait a minute...
金属学报  2019, Vol. 55 Issue (7): 849-858    DOI: 10.11900/0412.1961.2018.00481
  本期目录 | 过刊浏览 |
地质处置低氧过渡期X65低碳钢腐蚀行为研究
刘灿帅1,2,田朝晖2,张志明1,王俭秋1(),韩恩厚1
1. 中国科学院金属研究所中国科学院核用材料与安全评价重点实验室 沈阳 110016
2. 苏州热工研究院有限公司 苏州 215008
Corrosion Behaivour of X65 Low Carbon Steel During Redox State Transition Process of High LevelNuclear Waste Disposal
Canshuai LIU1,2,Zhaohui TIAN2,Zhiming ZHANG1,Jianqiu WANG1(),En-Hou HAN1
1. Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2. Suzhou Nuclear Power Research Institute Co. , Ltd. , Suzhou 215008, China
引用本文:

刘灿帅,田朝晖,张志明,王俭秋,韩恩厚. 地质处置低氧过渡期X65低碳钢腐蚀行为研究[J]. 金属学报, 2019, 55(7): 849-858.
Canshuai LIU, Zhaohui TIAN, Zhiming ZHANG, Jianqiu WANG, En-Hou HAN. Corrosion Behaivour of X65 Low Carbon Steel During Redox State Transition Process of High LevelNuclear Waste Disposal[J]. Acta Metall Sin, 2019, 55(7): 849-858.

全文: PDF(20380 KB)   HTML
摘要: 

利用实验室自行搭建的低氧手套箱电化学测试体系系统,长期监测X65低碳钢在模拟地质处置过渡期80 ℃低氧饱和膨润土中的电化学腐蚀行为,发现X65低碳钢的开路电位在150 d内逐渐降低,阻抗模逐渐增加,腐蚀类型从初期的点蚀转变为均匀腐蚀;利用SEM、EDS和μ?XRD表征了X65低碳钢腐蚀产物的形貌、元素组成和物相组成,发现腐蚀产物有颗粒状、片状、杆状和胞状4种类型,腐蚀产物中的元素均匀分布,产物物相由Fe3O4α-Fe2O3组成;使用失重法测量X65低碳钢平均腐蚀速率,发现腐蚀速率(V)在150 d内逐渐从195.88 μm/a降低到20.58 μm/a,V随时间(t)的变化规律符合降幂函数关系式V=8.34t-0.88,腐蚀过程受扩散控制。

关键词 地质处置低碳钢腐蚀电化学扩散    
Abstract

Domestic and foreign researches on the corrosion behavior of low carbon steel canister in high level nuclear waste geological repositories focus on the initial aerobic stage and the later anaerobic stage, while few researches have been reported on the corrosion behavior during the disposal transition period. The long term electrochemical corrosion behavior of X65 low carbon steel in 80 ℃ Gaomiaozi bentonite saturated with anaerobic Beishan groundwater has been studied by electrochemical measurement system in anaerobic glovebox constructed independently. The results indicated that the open circuit potential of X65 low carbon steel decreased gradually during 150 d, while the electrochemical impedance of the corrosion film increased with immersion time. Pitting corrosion occurred at the beginning of immersion tests, and finally transformed into general corrosion. Morphologies, compositions, and phases of the corrosion film formed on the carbon steel surface were examined by SEM, EDS and μ?XRD. The results showed that the corrosion film was mainly composed of blocks, slices, rods and swellings. The elemental distribution in the corrosion film was uniform, and the phases were composed of magnetite and hematite. The average corrosion rates were detected by weight loss measurement, which decreased from 195.88 μm/a to 20.58 μm/a. The corrosion rates (V) followed a power function pattern V=8.34t-0.88, indicating that the film growth process was controlled by oxygen diffusion.

Key wordsgeological dispodal    low carbon steel    corrosion    electrochemical    disffusion
收稿日期: 2018-10-22     
ZTFLH:  TF777.1  
基金资助:中国科学院前沿科学重点研究计划项目(No.QYZDY-SSWJSC012);中国科学院重点资助项目(No.ZDRW-CN-2017-1)
作者简介: 刘灿帅,男,1990年生,博士
图1  高放废物地质处置环境演变
图2  片状浸泡样品的取样位置
图3  双电极体系电解池示意图
图4  X65低碳钢在80 ℃低氧饱和膨润土中开路电位(OCP)随时间变化规律及80 ℃时Fe-H2O系E-pH图
图5  X65低碳钢在80 ℃ 低氧饱和膨润土中腐蚀产物微区X射线衍射分析
图6  X65低碳钢在80 ℃低氧饱和膨润土中浸泡不同时间后的EIS
图7  X65低碳钢在80 ℃低氧饱和膨润土中EIS等效电路与物理模型

Time

d

Rs

Ω·cm2

Ydl

10-4·Ω-1·cm-2·s-n

ndl

Rct

Ω·cm2

L

H·cm2

RL

Ω·cm2

1344.090.81685112703863
5384.760.82872189507468
10497.710.79139236903644
20505.370.78143530942631
40706.240.78148025241568
表1  X65低碳钢在80 ℃低氧饱和膨润土中腐蚀1~40 d EIS的拟合结果
图8  X65低碳钢在80 ℃低氧饱和膨润土中腐蚀不同时间后的表面形貌
图9  X65低碳钢在80 ℃低氧饱和膨润土中腐蚀不同时间后的截面形貌

Time

d

Rs

Ω·cm2

Ydl

10-4·Ω-1·cm-2·s-n

ndl

Rct

Ω·cm2

Yf

10-4·Ω-1·cm-2·s-n

nf

Rf

Ω·cm2

W

60856.940.7815067.650.79103612.82
80883.890.7915827.400.7514619.54
100905.520.8016927.090.7718784.62
1201114.280.7717087.010.7530763.56
1501475.490.7918306.960.7633742.87
表2  X65低碳钢在80 ℃低氧饱和膨润土中腐蚀60~150 d EIS的拟合结果
图10  X65低碳钢在80 ℃低氧饱和膨润土中浸泡150 d后的腐蚀产物典型微观形貌
SpeciesOFeNaMgAlSiSClCaMn
Block42.1454.690.460.550.580.320.220.140.250.65
Slice56.0539.470.511.180.910.640.230.130.500.38
Rod56.6540.070.340.831.060.210.150.060.300.33
Swelling55.0639.711.450.780.530.660.260.230.380.94
表3  X65低碳钢在80 ℃低氧饱和膨润土中腐蚀产物的平均元素组成
图11  X65低碳钢在80 ℃低氧饱和膨润土中浸泡150 d后腐蚀产物截面区域(图9d中方框区域)的元素分布
图12  X65低碳钢在80 ℃低氧饱和膨润土中的平均腐蚀速率随时间变化的拟合结果
[1] Wang J. Geological disposal of high level radioactive waste in China: Review and prospect [J]. Uranium Geol., 2009, 25: 71
[1] (王 驹. 高放废物深地质处置: 回顾与展望 [J]. 铀矿地质, 2009, 25: 71)
[2] Wang J. Geological disposal of high level radio active waste: Progress and challenges [J]. Eng. Sci., 2008, 10(3): 58
[2] (王 驹. 高放废物地质处置: 进展与挑战 [J]. 中国工程科学, 2008, 10(3): 58)
[3] SKB. Integrated account of method, site selection and programme prior to the site investigation phase [R]. Stockholm: Swedish Nuclear Fuel and Waste Management Co., 2001
[4] Wang J. Geological Disposal of High Level Radioactive Waste in China in the New Century [M]. Beijing: China Atomic Energy Press, 2016: 127
[4] (王 驹. 新世纪中国高放废物地质处置 [M]. 北京: 中国原子能出版社, 2016: 127)
[5] McMurry J, Ikeda B M, Stroes-Gascoyne S, et al. Evolution of a canadian deep geologic repository: Base scenario [R]. Toronto, Ontario, Canada: Atomic Energy of Canada Limited, 2003
[6] King F, Shoesmith D W. Nuclear waste canister materials: Corrosion behaviour and long-term performance in geological repository systems [A]. Geological Repository Systems for Safe Disposal of Spent Nuclear Fuels and Radioactive Waste [M]. Cambridge: Woodhead Publishing Limited, 2010: 365
[7] Zhang Y J. Numerical analysis for coupled thermo-hydro-mechanical processes in engineered barrier of conceptual nuclear waste repository [J]. Eng. Mech., 2007, 24(5): 186
[7] (张玉军. 核废料处置概念库工程屏障中热-水-应力耦合过程数值分析 [J]. 工程力学, 2007, 24(5): 186)
[8] Honda A, Teshima T, Tsurudome K, et al. Effect of compacted bentonite on the corrosion behavior of carbon steel as geological isolation overpack material [J]. MRS Proceedings, 1990, 212: 287
[9] Xia X, Idemitsu K, Arima T, et al. Corrosion of carbon steel in compacted bentonite and its effect on neptunium diffusion under reducing condition [J]. Appl. Clay Sci., 2005, 28: 89
[10] Kozaki T, Imamura Y, Takada J, et al. Corrosion of iron and migration of corrosion products in compacted bentonite [J]. MRS Proceedings, 1994, 353: 329
[11] Westerman R E, Nelson J L, Pitman S G, et al. Evaluation of iron-base materials for waste package containers in a salt repository [J]. MRS Proc., 2011, 26: 427
[12] Ahn T M, Soo P. Corrosion of low-carbon cast steel in concentrated synthetic groundwater at 80 to 150 ℃ [J]. Waste Manag., 1995, 15: 471
[13] McCright R D, Weiss H. Corrosion behavior of carbon steels under tuff repository environmental conditions [J]. MRS Proceedings, 1984, 44: 287
[14] Smailos E, Fiehn B, Gago J A, et al. Corrosion studies on selected metallic materials for application in nuclear waste disposal containers [R]. Karlsruhe: Institut für Nukleare Entsorgung, 1994
[15] Smailos E, Schwarzkopf W, Kienzler B, et al. Corrosion of carbon-steel containers for heat-generating nuclear waste in brine environments relevant for a rock-salt repository [J]. MRS Proceedings, 1991, 257: 399
[16] Smailos E, Schwarzkopf W, Koester R, et al. Corrosion testing of selected packaging materials for disposal of high-level waste glass in rock and salt formations [R]. Karlsruhe: Institut für Nukleare Entsorgung, 1990
[17] Smailos E. Corrosion investigations of selected container materials for HLW disposal in rock salt formations [R]. Karlsruhe: Kernforschungszentrum Karlsruhe GmbH, 1985
[18] Smart N R, Blackwood D J, Werme L. Anaerobic corrosion of carbon steel and cast iron in artificial groundwaters: Part 2—Gas generation [J]. Corrosion, 2002, 58: 627
[19] Johnson L H, King F. Canister options for the disposal of spent fuel [R]. Wettingen: National Cooperative for the Disposal of Radioactive Waste, 2003
[20] King F. Overview of a carbon steel container corrosion model for a deep geological repository in sedimentary rock [R]. Toronto: Nuclear Waste Management Organization, 2007
[21] Zheng M, Huang Y L, Xifang D, et al. Corrosion behavior of Q235 steel in simulated underground water and highly compacted bentonite environment of Beishan area [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 398
[21] (郑 珉, 黄彦亮, 西方笃等. Q235钢在甘肃北山地区地下水模拟液及高压实膨润土环境下的腐蚀行为 [J]. 中国腐蚀与防护学报, 2016, 36: 398)
[22] Liu C S, Wang J Q, Zhang Z M, et al. Studies on corrosion behaviour of low carbon steel canister with and without γ-irradiation in China's HLW disposal repository [J]. Corros. Eng. Sci. Technol., 2017, 52(suppl.): 136
[23] Liu C S, Wang J Q, Zhang Z M, et al. Characterization of corrosion behavior of irradiated X65 low carbon steel in aerobic and unsaturated gaomiaozi bentonite [J]. Acta Metall. Sin. (Engl. Lett.), 2019, 32: 506
[24] Liu C S, Wang J Q, Zhang Z M, et al. Effect of cumulative gamma irradiation on microstructure and corrosion behaviour of X65 low carbon steel [J]. J. Mater. Sci. Technol., 2018, 34: 2131
[25] Dong J H, Nishimura T, Kodama T. Corrosion behavior of carbon steel in bicarbonate (HCO3) solutions [J]. MRS Proceedings, 2002, 713: JJ11.8
[26] Wen H L, Dong J H, Ke W, et al. Active/passive behavior of low carbon steel in deaerated bicarbonate solution [J]. Acta Metall. Sin., 2014, 50: 275
[26] (文怀梁, 董俊华, 柯 伟等. 模拟高放废物地质处置环境下重碳酸盐浓度对低碳钢活化/钝化腐蚀倾向的影响 [J]. 金属学报, 2014, 50: 275)
[27] Yang J F, Dong J H, Ke W. Effects of SO42- and Cl- on active/passive corrosion behaviors of low carbon steel in deaerated bicarbonate solution [J]. Acta Metall. Sin., 2011, 47: 1321
[27] (阳靖峰, 董俊华, 柯 伟. 重碳酸盐溶液中SO42-和Cl-对低碳钢活化/钝化腐蚀行为的影响 [J]. 金属学报, 2011, 47: 1321)
[28] Yang J F, Dong J H, Ke W, et al. Influence of pH values and corrosion products on low carbon steel corrosion susceptibility in borate buffer solution [J]. Acta Metall. Sin., 2011, 47: 152
[28] (阳靖峰, 董俊华, 柯 伟等. 硼酸缓冲溶液中pH值和腐蚀产物对低碳钢活化/钝化敏感性的影响 [J]. 金属学报, 2011, 47: 152)
[29] Sherar B W A, Keech P G, Shoesmith D W. Carbon steel corrosion under anaerobic-aerobic cycling conditions in near-neutral pH saline solutions—Part 1: Long term corrosion behaviour [J]. Corros. Sci., 2011, 53: 3636
[30] Sherar B W A, Keech P G, Shoesmith D W. Carbon steel corrosion under anaerobic-aerobic cycling conditions in near-neutral pH saline solutions. Part 2: Corrosion mechanism [J]. Corros. Sci., 2011, 53: 3643
[31] Martin F, Perrin S, Fenart M, et al. On corrosion of carbon steels in Callovo-Oxfordian clay: Complementary EIS, gravimetric and structural study providing insights on long term behaviour in French geological disposal conditions [J]. Corros. Eng. Sci. Technol., 2014, 49: 460
[32] Chen J, Qin Z, Shoesmith D W. Kinetics of corrosion film growth on copper in neutral chloride solutions containing small concentrations of sulfide [J]. J. Electrochem. Soc., 2010, 157: C338
[33] Wang J Z, Wang J Q. Influence of ethanolamine on corrosion of alloy 690 in simulated secondary water [J]. J. Mater. Sci. Technol., 2015, 31: 1039
[34] Lu Y F, Dong J H, Ke W. Effects of Cl? ions on the corrosion behaviour of low alloy steel in deaerated bicarbonate solutions [J]. J. Mater. Sci. Technol., 2016, 32: 341
[35] Pourbaix M. Significance of protection potential in pitting and intergranular corrosion [J]. Corrosion, 1970, 26: 431
[36] Cao C N. Principles of Electrochemistry of Corrosion [M]. Beijing: Chemical Industry Press, 2008: 205
[36] (曹楚南. 腐蚀电化学原理 [M]. 北京: 化学工业出版社, 2008: 205)
[37] Liu C S. Corrosion behaviour of X65 low carbon steel in the environment of high level nuclear waste repository [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2018
[37] (刘灿帅. 高放废物地质处置环境中X65低碳钢腐蚀行为研究 [D]. 沈阳: 中国科学院金属研究所, 2018)
[38] Shimizu K, Miyahara K, Hasegawa H, et al. H12: Project to establish the scientific and technical basis for HLW disposal in Japan [R]. Ibaraki: Japan Nuclear Cycle Development Institute, 2000
[39] Leygra C, Wallinder I O, Tidblad J, et al. Atmospheric Corrosion [M]. 2nd Ed., Hoboken: John Wiley & Sons, 2016: 110
[1] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] 陈润农, 李昭东, 曹燕光, 张启富, 李晓刚. 9%Cr合金钢在含Cl环境中的初期腐蚀行为及局部腐蚀起源[J]. 金属学报, 2023, 59(7): 926-938.
[3] 李小涵, 曹公望, 郭明晓, 彭云超, 马凯军, 王振尧. 低碳钢Q235、管线钢L415和压力容器钢16MnNi在湛江高湿高辐照海洋工业大气环境下的初期腐蚀行为[J]. 金属学报, 2023, 59(7): 884-892.
[4] 赵平平, 宋影伟, 董凯辉, 韩恩厚. 不同离子对TC4钛合金电化学腐蚀行为的协同作用机制[J]. 金属学报, 2023, 59(7): 939-946.
[5] 司永礼, 薛金涛, 王幸福, 梁驹华, 史子木, 韩福生. Cr添加对孪生诱发塑性钢腐蚀行为的影响[J]. 金属学报, 2023, 59(7): 905-914.
[6] 张奇亮, 王玉超, 李光达, 李先军, 黄一, 徐云泽. EH36钢在不同粒径沙砾冲击下的冲刷腐蚀耦合损伤行为[J]. 金属学报, 2023, 59(7): 893-904.
[7] 王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.
[8] 王京阳, 孙鲁超, 罗颐秀, 田志林, 任孝旻, 张洁. 以抗CMAS腐蚀为目标的稀土硅酸盐环境障涂层高熵化设计与性能提升[J]. 金属学报, 2023, 59(4): 523-536.
[9] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[10] 韩恩厚, 王俭秋. 表面状态对核电关键材料腐蚀和应力腐蚀的影响[J]. 金属学报, 2023, 59(4): 513-522.
[11] 常立涛. 压水堆主回路高温水中奥氏体不锈钢加工表面的腐蚀与应力腐蚀裂纹萌生:研究进展及展望[J]. 金属学报, 2023, 59(2): 191-204.
[12] 廖京京, 张伟, 张君松, 吴军, 杨忠波, 彭倩, 邱绍宇. Zr-Sn-Nb-Fe-V合金在过热蒸汽中的周期性钝化-转折行为[J]. 金属学报, 2023, 59(2): 289-296.
[13] 夏大海, 计元元, 毛英畅, 邓成满, 祝钰, 胡文彬. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制[J]. 金属学报, 2023, 59(2): 297-308.
[14] 胡文滨, 张晓雯, 宋龙飞, 廖伯凯, 万闪, 康磊, 郭兴蓬. 共晶高熵合金AlCoCrFeNi2.1H2SO4 溶液中的腐蚀行为[J]. 金属学报, 2023, 59(12): 1644-1654.
[15] 徐文国, 郝文江, 李应举, 赵庆彬, 卢炳聿, 郭和一, 刘天宇, 冯小辉, 杨院生. 微量AlTiInconel 690合金高温氧化行为的影响[J]. 金属学报, 2023, 59(12): 1547-1558.