Please wait a minute...
金属学报  2019, Vol. 55 Issue (7): 831-839    DOI: 10.11900/0412.1961.2018.00450
  本期目录 | 过刊浏览 |
Al-Bi合金凝固过程及微合金化元素Sn的影响
黎旺1,2,孙倩1,2,江鸿翔1,赵九洲1,2()
1. 中国科学院金属研究所 沈阳 110016
2. 中国科学技术大学材料科学与工程学院 沈阳 110016
Solidification of Al-Bi Alloy and Influence of Microalloying Element Sn
Wang LI1,2,Qian SUN1,2,Hongxiang JIANG1,Jiuzhou ZHAO1,2()
1. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2. School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
引用本文:

黎旺,孙倩,江鸿翔,赵九洲. Al-Bi合金凝固过程及微合金化元素Sn的影响[J]. 金属学报, 2019, 55(7): 831-839.
Wang LI, Qian SUN, Hongxiang JIANG, Jiuzhou ZHAO. Solidification of Al-Bi Alloy and Influence of Microalloying Element Sn[J]. Acta Metall Sin, 2019, 55(7): 831-839.

全文: PDF(16658 KB)   HTML
摘要: 

实验研究了Al-Bi合金凝固过程及微合金化元素Sn的影响,发现添加微量Sn能有效改变Al-Bi合金的液-液相变过程、细化富Bi相粒子。Sn对富Bi相的细化效果随着Sn添加量的增加而增强,当添加量≥0.10% (质量分数)时即可达到最佳细化效果。建立了Al-Bi合金凝固过程中组织演变的动力学模型,模拟分析了微合金化元素Sn作用下Al-Bi合金凝固组织形成过程。结果表明,微量Sn可有效降低Al-Bi合金两液相间的界面能,提高富Bi相液滴的形核率,促进Al-Bi合金形成弥散型凝固组织。

关键词 Al-Bi合金凝固微合金化界面能模拟    
Abstract

Al-Bi alloy has a low friction coefficient and high wear-resistant properties and is a good self-lubricating material for advanced bearings in automotive applications if the soft Bi-rich phase is dispersedly distributed in the comparatively harder Al-based matrix. However, Al-Bi alloy is a typical immiscible alloy. When cooling a homogeneous single phase liquid of Al-Bi alloy in the miscibility gap, it transforms into two liquids. The liquid-liquid phase transformation generally leads to the formation of a phase segregated microstructure. In the last decades, considerable efforts have been made to study the solidification behavior of Al-Bi alloy. It is demonstrated that the microstructure evolution during the liquid-liquid decomposition is a result of concurrent actions of the nucleation, growth, Ostwald ripening and motions of the Bi-rich droplets. The nucleation and the immigration of the Bi-rich droplets show a dominant influence on the solidification microstructure of Al-Bi alloy. Enhancing the nucleation rate and reducing the Marangoni migration velocity of the Bi-rich droplets promote the formation of a well dispersed microstructure. Considering that addition of surface active element to the alloy may result in a reduction in the liquid-liquid interface energy, and thus reduce the nucleation energy barrier and Marangoni migration velocity of the Bi-rich droplets, the possibility to control the solidification process and microstructure of Al-Bi alloys by adding micro-alloying element Sn was investigated. The experimental results show that microalloying element Sn can cause an effective refinement of the Bi-rich particles. The refining effect increases with the increase of Bi content up to 0.10%Sn (mass fraciton). A model was developed to calculate the microstructure formation. The numerical results demonstrate that Sn can act as an effective surface active element for Al-Bi alloys and promote the formation of a well dispersed microstructure.

Key wordsAl-Bi alloy    solidification    microalloying    interfacial energy    simulation
收稿日期: 2018-09-25     
ZTFLH:  TG111.4,TG27  
基金资助:国家自然科学基金项目(Nos.51471173);国家自然科学基金项目(51771210);国家自然科学基金项目(51501207);中国载人航天工程项目(China Manned Space Engineering Project)
作者简介: 黎 旺,女,1993年生,博士生
图1  Al-9.0%Bi合金熔体冷却曲线
图2  Al-xBi合金显微组织
图3  Al-xBi合金中富Bi相粒子的二维尺寸分布
图4  Al-9.0%Bi-ySn合金显微组织
图6  Al-xBi-0.10%Sn合金显微组织
图7  Al-xBi-ySn (y=0、0.10%)合金内富Bi相粒子二维平均直径随Bi含量的变化
图5  Al-9.0%Bi-ySn合金中富Bi相粒子的二维平均尺寸随Sn添加量的变化
图8  实验测定Al-9.0%Bi合金中富Bi相颗粒体积分数(?p)沿试样轴向和径向分布
图9  Al-9.0%Bi和Al-9.0%Bi-0.10%Sn合金测量熔体温度(Tmelt)、平衡组元互溶温度(Tb)、过冷度(ΔTd=Tb-Tmelt)、富Bi相液滴形核率(Id)和α-Al体积分数(ξα-Al)随凝固时间的变化
图10  Al-9.0%Bi和Al-9.0%Bi-0.10%Sn合金富Bi相二维平均直径(<Dd>)、数量密度(Nd)和Id随凝固时间的变化
[1] Freitas E S, Silva A P, Spinelli J E, et al. Inter-relation of microstructural features and dry sliding wear behavior of monotectic Al-Bi and Al-Pb alloys [J]. Tribol. Lett., 2014, 55: 111
[2] Ratke L, Diefenbach S. Liquid immiscible alloys [J]. Mater. Sci. Eng., 1995, R15: 263
[3] Zhao J Z, Jiang H X, Sun Q, et al. Progress of research on solidification process and microstructure control of immiscible alloys [J]. Mater. China, 2017, 36: 252
[3] (赵九洲, 江鸿翔, 孙 倩等. 偏晶合金凝固过程及凝固组织控制方法研究进展 [J]. 中国材料进展, 2017, 36: 252)
[4] Zhao J Z, Jiang H X. Progress in the solidification of monotectic alloys [J]. Acta Metall. Sin., 2018, 54: 682
[4] (赵九洲, 江鸿翔. 偏晶合金凝固过程研究进展 [J]. 金属学报, 2018, 54: 682)
[5] Lu W Q, Zhang S G, Zhang W, et al. A full view of the segregation evolution in Al-Bi immiscible alloy [J]. Metall. Mater. Trans., 2017, 48A: 2701
[6] Lu W Q, Zhang S G, Zhang W, et al. Direct observation of the segregation driven by bubble evolution and liquid phase separation in Al-10 wt.% Bi immiscible alloy [J]. Scr. Mater., 2015, 102: 19
[7] Lu W Q, Zhang S G, Li J G. Segregation driven by collision and coagulation of minor droplets in Al-Bi immiscible alloys under aerodynamic levitation condition [J]. Mater. Lett., 2013, 107: 340
[8] Silva A P, Spinelli J E, Mangelinck-No?l N, et al. Microstructural development during transient directional solidification of hypermonotectic Al-Bi alloys [J]. Mater. Des., 2010, 31: 4584
[9] Jia P, Zhang J Y, Geng H R, et al. High-efficiency inhibition of gravity segregation in Al-Bi immiscible alloys by adding Lanthanum [J]. Met. Mater. Int., 2018, 24: 1262
[10] Man T N, Zhang L, Xu N K, et al. Effect of rare-earth Ce on macrosegregation in Al-Bi immiscible alloys [J]. Metals, 2016, 6: 177
[11] Silva A P, Spinelli J E, Garcia A. Microstructural evolution during upward and downward transient directional solidification of hypomonotectic and monotectic Al-Bi alloys [J]. J. Alloys Compd., 2009, 480: 485
[12] Zha M, Li Y J, Mathiesen R H, et al. Dispersion of soft Bi particles and grain refinement of matrix in an Al-Bi alloy by equal channel angular pressing [J]. J. Alloys Compd., 2014, 605: 131
[13] Kang Z Q, Zhang Y B, Yang X, et al. Distribution law of rich Bi phase in Al-Bi monotectic alloy during the solidification process [J]. Mater. Rev., 2018, 32: 598
[13] (康智强, 张煜博, 杨 雪等. Al-Bi过偏晶合金凝固过程中富Bi相分布规律研究 [J]. 材料导报, 2018, 32: 598)
[14] Wu Y Q, Li C J. Investigation of the phase separation of Al-Bi immiscible alloy melts by viscosity measurements [J]. J. Appl. Phys., 2012, 111: 073521
[15] Zhang H W, Xian A P. Study of Al-Bi immiscible alloy controlcasting technique [J]. Acta Metall. Sin., 1999, 35: 1187
[15] (张宏闻, 冼爱平. Al-Bi偏晶合金的控制铸造技术探索 [J]. 金属学报, 1999, 35: 1187)
[16] He J, Zhao J Z, Wang X F, et al. An experimental study of the rapid continuous solidification of Al-Bi immiscible alloy [J]. Acta Metall. Sin., 2006, 42: 67
[16] (何 杰, 赵九洲, 王晓峰等. Al-Bi难混溶合金快速连续凝固的实验研究 [J]. 金属学报, 2006, 42: 67)
[17] Phanikumar G, Dutta P, Galun R, et al. Microstructural evolution during remelting of laser surface alloyed hyper-monotectic Al-Bi alloy [J]. Mater. Sci. Eng., 2004, A371: 91
[18] Zhang H W, Xian A P. Effect of the third element on the structure of casting Al-Bi immiscible alloys [J]. Acta Metall. Sin., 2000, 36: 347
[18] (张宏闻, 冼爱平. 第三组元对Al-Bi偏晶合金凝固组织的影响 [J]. 金属学报, 2000, 36: 347)
[19] Silva A P, Spinelli J E, Garcia A. Thermal parameters and microstructure during transient directional solidification of a monotectic Al-Bi alloy [J]. J. Alloys Compd., 2009, 475: 347
[20] He J, Zhao J Z, Wang X F, et al. Investigation of rapid directional solidification of Al-based immiscible alloys Ⅲ. Effect of the third element [J]. Acta Metall. Sin., 2007, 43: 573
[20] (何 杰, 赵九洲, 王晓峰等. Al基难混溶合金快速定向凝固研究Ⅲ. 第三组元的影响 [J]. 金属学报, 2007, 43: 573)
[21] Zhu J, Wang T M, Cao F, et al. Real-time observation on evolution of droplets morphology affected by electric current pulse in Al-Bi immiscible alloy [J]. J. Mater. Eng. Perform., 2013, 22: 1319
[22] He J, Zhao J Z, Wang X F, et al. Investigation of rapid directional solidification of Al-based immiscible alloys Ⅱ. Effect of static magnetic field [J]. Acta Metall. Sin., 2007, 43: 567
[22] (何 杰, 赵九洲, 王晓峰等. Al基难混溶合金快速定向凝固研究Ⅱ. 恒定磁场的影响 [J]. 金属学报, 2007, 43: 567)
[23] Huang Q, Luo X H, Li Y Y. An alloy solidification experiment conducted on Shenzhou spacecraft [J]. Adv. Space Res., 2005, 36: 86
[24] Yang Z Z, Sun Q, Zhao J Z. Directional solidification of monotectic composition Al-Bi alloy [J]. Acta Metall. Sin., 2014, 50: 25
[24] (杨志增, 孙 倩, 赵九洲. Al-Bi偏晶点成分合金定向凝固过程研究 [J]. 金属学报, 2014, 50: 25)
[25] Lu W Q, Zhang S G, Hu Q D, et al. Interaction between L2 droplets and L1/L interface in solidifying Al-Bi immiscible alloy [J]. Mater. Lett., 2016, 182: 351
[26] Sun Q, Jiang H X, Zhao J Z, et al. Microstructure evolution during the liquid-liquid phase transformation of Al-Bi alloys under the effect of TiC particles [J]. Acta Mater., 2017, 129: 321
[27] Zhao J Z, Ratke L. A model describing the microstructure evolution during a cooling of immiscible alloys in the miscibility gap [J]. Scr. Mater., 2004, 50: 543
[28] Zhao J Z, Li H L, Zhang X F, et al. Nucleation determined microstructure formation in immiscible alloys [J]. Mater. Lett., 2008, 62: 3779
[29] Wu M H, Ludwig A, Ratke L. Modeling of marangoni-induced droplet motion and melt convection during solidification of hypermonotectic alloys [J]. Metall. Mater. Trans., 2003, 34A: 3009
[30] Sun Q, Jiang H X, Zhao J Z. Effect of micro-alloying element Bi on solidification and microstructure of Al-Pb alloy [J]. Acta Metall. Sin., 2016, 52: 497
[30] (孙 倩, 江鸿翔, 赵九洲. 微量元素Bi对Al-Pb合金凝固过程及显微组织的影响 [J]. 金属学报, 2016, 52: 497)
[31] Wang C P, Liu X J, Ohnuma I, et al. Formation of immiscible alloy powders with egg-type microstructure [J]. Science, 2002, 297: 990
[32] Li H L, Zhao J Z, Zhang Q X, et al. Microstructure formation in a directionally solidified immiscible alloy [J]. Metall. Mater. Trans., 2008, 39A: 3308
[33] Zhao L, Zhao J Z. Microstructure formation in a gas-atomized drop of Al-Pb-Sn immiscible alloy [J]. Metall. Mater. Trans., 2012, 43A: 5019
[34] Christian J W. The Theory of Transformations in Metals and Alloys [M]. Amsterdam: Pergamon Press Ltd, 2002: 546
[35] Budai I, Benk? M Z, Kaptay G. Comparison of different theoretical models to experimental data on viscosity of binary liquid alloys [J]. Mater. Sci. Forum, 2007, 537-538: 489
[36] Kaptay G. A new theoretical equation for temperature dependent self-diffusion coefficients of pure liquid metals [J]. Int. J. Mat. Res., 2008, 99: 14
[37] Kaban I, K?hler M, Ratke L, et al. Interfacial tension, wetting and nucleation in Al-Bi and Al-Pb monotectic alloys [J]. Acta Mater., 2011, 59: 6880
[38] He J. Formation mechanism of microstructure in rapidly solidified immiscible alloys [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2006
[38] (何 杰. 快速冷却条件下难混溶合金凝固组织形成机理 [D]. 沈阳: 中国科学院金属研究所, 2006)
[39] Yang S, Liu W J, Jia J. Directional solidification of Al-3.4wt%Bi monotectic alloy [J]. Prog. Nat. Sci., 2001, 11: 729
[39] (杨 森, 刘文今, 贾 均. Al-3.4wt%Bi偏晶合金定向凝固组织演变规律研究 [J]. 自然科学进展, 2001, 11: 729)
[40] Jin G. Surfactant Chemistry [M]. Hefei: University of Science and Technology of China Press, 2008: 59
[40] (金 谷. 表面活性剂化学 [M]. 合肥: 中国科学技术大学出版社, 2008: 59)
[1] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] 毕中南, 秦海龙, 刘沛, 史松宜, 谢锦丽, 张继. 高温合金锻件残余应力量化表征及控制技术研究进展[J]. 金属学报, 2023, 59(9): 1144-1158.
[3] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[4] 陈佳, 郭敏, 杨敏, 刘林, 张军. 新型钴基高温合金中W元素对蠕变组织和性能的影响[J]. 金属学报, 2023, 59(9): 1209-1220.
[5] 张海峰, 闫海乐, 方烽, 贾楠. FeMnCoCrNi高熵合金双晶微柱变形机制的分子动力学模拟[J]. 金属学报, 2023, 59(8): 1051-1064.
[6] 张禄, 余志伟, 张磊成, 江荣, 宋迎东. GH4169高温合金热机械疲劳循环损伤机理及数值模拟[J]. 金属学报, 2023, 59(7): 871-883.
[7] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[8] 刘继浩, 周健, 武会宾, 马党参, 徐辉霞, 马志俊. 喷射成形M3高速钢偏析成因及凝固机理[J]. 金属学报, 2023, 59(5): 599-610.
[9] 苏震奇, 张丛江, 袁笑坦, 胡兴金, 芦可可, 任维丽, 丁彪, 郑天祥, 沈喆, 钟云波, 王晖, 王秋良. 纵向静磁场下单晶高温合金定向凝固籽晶回熔界面杂晶的形成与演化[J]. 金属学报, 2023, 59(12): 1568-1580.
[10] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[11] 陈凯旋, 李宗烜, 王自东, Demange Gilles, 陈晓华, 张佳伟, 吴雪华, Zapolsky Helena. Cu-2.0Fe合金等温处理过程中富Fe析出相的形态演变[J]. 金属学报, 2023, 59(12): 1665-1674.
[12] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[13] 戚晓勇, 柳文波, 何宗倍, 王一帆, 恽迪. UN核燃料烧结致密化过程的相场模拟[J]. 金属学报, 2023, 59(11): 1513-1522.
[14] 周小宾, 赵占山, 汪万行, 徐建国, 岳强. 渣-金界面气泡夹带行为数值物理模拟[J]. 金属学报, 2023, 59(11): 1523-1532.
[15] 李赛, 杨泽南, 张弛, 杨志刚. 珠光体-奥氏体相变中扩散通道的相场法研究[J]. 金属学报, 2023, 59(10): 1376-1388.