Please wait a minute...
金属学报  2019, Vol. 55 Issue (4): 445-456    DOI: 10.11900/0412.1961.2018.00449
  本期目录 | 过刊浏览 |
23Cr-2.2Ni-6.3Mn-0.26NNi型双相不锈钢动态再结晶行为研究
邓亚辉,杨银辉(),曹建春,钱昊
昆明理工大学材料科学与工程学院 昆明 650093
Research on Dynamic Recrystallization Behavior of 23Cr-2.2Ni-6.3Mn-0.26N Low Nickel TypeDuplex Stainless Steel
Yahui DENG,Yinhui YANG(),Jianchun CAO,Hao QIAN
School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
引用本文:

邓亚辉,杨银辉,曹建春,钱昊. 23Cr-2.2Ni-6.3Mn-0.26NNi型双相不锈钢动态再结晶行为研究[J]. 金属学报, 2019, 55(4): 445-456.
Yahui DENG, Yinhui YANG, Jianchun CAO, Hao QIAN. Research on Dynamic Recrystallization Behavior of 23Cr-2.2Ni-6.3Mn-0.26N Low Nickel TypeDuplex Stainless Steel[J]. Acta Metall Sin, 2019, 55(4): 445-456.

全文: PDF(13546 KB)   HTML
摘要: 

利用热模拟试验机在变形温度为1073~1423 K,应变速率为0.01~10 s-1的条件下对23Cr-2.2Ni-6.3Mn-0.26N节Ni型双相不锈钢动态再结晶行为进行研究。结果表明,试样在低温高应变速率变形时以两相动态回复(DRV)为主,而在高温低应变速率变形时以奥氏体动态再结晶(DRX)为主,且在0.01和0.1 s-1较低应变速率下,奥氏体相再结晶晶粒尺寸随变形温度升高而增大。试样的软化机制与Z参数有关,在低Z值条件下,热变形软化以奥氏体相DRX为主。基于热变形方程得到试样的表观应力指数为5.18,热变形表观激活能为391.16 kJ/mol,并利用Sellars 双曲正弦模型建立了峰值流变应力与Z参数关系本构方程。DRX临界应力随应变速率增加和变形温度减小而增大,DRX临界应变随变形温度减小而增加,且随应变速率增加(0.1~10 s-1)在较低变形温度下先增大后减小。确定了DRX临界应力(应变)和峰值应力(应变)的关系,DRX特征参数和Z参数相关模型,以及奥氏体相DRX体积分数模型。利用所建模型对DRX行为进行预测,表明应变速率增加和变形温度下降会推迟DRX发生。

关键词 双相不锈钢节Ni型动态再结晶临界应变临界应力    
Abstract

The difference of crystal structure and stacking fault energy (SFE) of two phases in duplex stainless steels (DSS) make different softening mechanism during hot deformation. Due to different austenite stability of Mn and Ni, the substitution of Mn for Ni will significantly affect dynamic recrystallization (DRX) behavior of compression deformation. The DRX behaviors of 23Cr-2.2Ni-6.3Mn-0.26N low nickel type DSS were studied in the deformation temperatures of 1073~1423 K and strain rates of 0.01~10 s-1 by using a thermal simulator. The results showed that the deformation procedure of samples are mainly softened by dynamic recovery (DRV) of two phases at low temperature and high deformation strain rate, and mainly softened by austenite DRX at high temperature and low deformation strain rate. At the low strain rates of 0.01 and 0.1 s-1, the grain size of austenite DRX increased with the increase of deformation temperature. The softening mechanism of samples are related to the Z parameter, and the deformation softening is mainly caused by austenite DRX under the condition of low Z value. Based on the thermal deformation equation, the apparent stress index of samples were calculated as 5.18, and the apparent activation energy of thermal deformation was calculated as 391.16 kJ/mol. The constitutive equation of the relationship between the peak flow stress and the Z parameter was established by hyperbolic sinusoidal model proposed by Sellars. The critical stress of DRX increases with increasing strain rate and decreasing deformation temperature, while the critical strain of DRX increases with the decrease of deformation temperature, and increases at first and then decreases with increasing strain rate (0.1~10 s-1) at low deformation temperature. The relationship between the DRX critical stress (strain) and peak stress (strain), as well as DRX characteristic parameters and Z parameter correlation models, and the austenite phase DRX volume fraction models were determined. Moreover, the DRX volume fraction models predict that the increase of strain rate and the decrease of deformation temperature can delay occurrence of DRX.

Key wordsduplex stainless steel    low nickel type    dynamic recrystallization    critical strain    critical stress
收稿日期: 2018-09-20     
ZTFLH:  TG142  
基金资助:国家自然科学基金项目(No.51461024)
作者简介: 邓亚辉,男,1992年生,硕士生
图1  相同应变速率、不同变形温度条件下的真应力-真应变曲线
图2  双相不锈钢在不同应变速率及温度下的典型OM像
图3  试样在不同温度下的应变硬化率曲线
ε˙ / s-1T / Kεcεpσc / MPaσp / MPaσs / MPa
0.110730.145260.26283248.750274.1315269.2720
11730.120750.20557182.550196.3656175.3600
13230.100910.1577784.07686.157175.0038
14230.083830.1237153.27654.715047.8533
110730.160510.33020312.590340.7937333.6438
11730.130120.20899297.210303.6478291.0098
13230.116010.20568123.460128.2068121.7003
14230.106820.1957889.24290.459681.5782
1010730.160030.30253377.082397.2519372.7911
11730.128700.24051334.830346.5571318.7496
13230.080130.11041204.780211.6203198.3243
14230.071020.09170116.350119.3346117.2951
表1  双相不锈钢的特征参数
图4  试样的临界应力-峰值应力和临界应变-峰值应变的关系
图5  峰值应力与应变速率和变形温度的关系
图6  参数lnZ和ln[sinh(ασp)]的拟合图
图7  峰值应力的实验值与计算值的比较
图8  临界条件与Z参数的拟合图
图9  在高、中、低Z值条件下应变硬化率随真应变增加的关系
图10  lnln(1/(1-X))和ln((ε-εc)/εp)的关系
图11  动态再结晶体积分数的实验值与计算值
图12  0.1和1 s-1应变速率的不同变形温度下的奥氏体相体积分数及模型预测奥氏体相动态再结晶体积分数随应变变化
1 Shu X J, Zhang S Q, Song Z G. Experimental research on hot workability of 00Cr22Ni5Mo3N dual phase stainless steel [J]. Steel Pipe, 2004, 33(6): 15
1 舒先进, 张淑琴, 宋志刚. 00Cr22Ni5Mo3N双相不锈钢热加工性能的试验研究 [J]. 钢管, 2004, 33(6): 15)
2 Charles J, Chemelle P. The history of duplex developments nowadays DSS properties and duplex market future trends [J]. World Iron Steel, 2011, (6): 1
3 Feng H, Zhou X Y, Liu H, et al. Development and trend of hyper duplex stainless steels [J]. J. Iorn Steel Res., 2015, 27(4): 1
3 丰 涵, 周晓玉, 刘 虎等. 特超级双相不锈钢的发展现状及趋势 [J]. 钢铁研究学报, 2015, 27(4): 1)
4 Gao W, Luo J M, Yang J J. Research progress and application of double phase stainless steel [J]. Ordnan. Meter. Sci. Eng., 2005, 28(3): 61
4 高 娃, 罗建民, 杨建君. 双相不锈钢的研究进展及其应用 [J]. 兵器材料科学与工程, 2005, 28(3): 61)
5 Du C F, Zhan F, Yang Y H, et al. Research progress in nickel-saving duplex stainless steel [J]. Met. Funct. Mater., 2010, 17(5): 63
5 杜春风, 詹 凤, 杨银辉等. 节镍型双相不锈钢的研究进展 [J]. 金属功能材料, 2010, 17(5): 63)
6 Su Y S, Yang Y H, Cao J C, et al. Research on hot working behavior of low-nickel duplex stainless steel 2101 [J]. Acta Metall. Sin., 2018, 54: 485
6 苏煜森, 杨银辉, 曹建春等. 节Ni型2101双相不锈钢的高温热加工行为研究 [J]. 金属学报, 2018, 54: 485
7 Zhao X, Liu C H, Li Y N. Hot processing map of super duplex stainless steel UNS S32750 [J]. Hot Work. Technol., 2015, 44(15): 153
7 赵 新, 刘长红, 李亚宁. 超级双相不锈钢UNS S32750的热加工图 [J]. 热加工工艺, 2015, 44(15): 153)
8 Mao P L, Yang K, Su G Y. Hot deformation behavior of an as-cast duplex stainless steel [J]. J. Mater. Sci. Technol., 2003, 19: 379
9 Momeni A, Dehghani K, Poletti M C. Law of mixture used to model the flow behavior of a duplex stainless steel at high temperatures [J]. Mater. Chem. Phys., 2013, 139: 747
10 Momeni A, Dehghani K, Keshmiri H, et al. Hot deformation behavior and microstructural evolution of a superaustenitic stainless steel [J]. Mater. Sci. Eng., 2010, A527: 1605
11 Siegmund T, Werner E, Fischer F D. On the thermomechanical deformation behavior of duplex-type materials [J]. J. Mech. Phys. Solids, 1995, 43: 495
12 Piñol-Juez A, Iza-Mendia A, Gutiérrez I. δ/γ interface bondary sliding as a mechanism for strain accommodation during hot deformation in a duplex stainless steel [J]. Metall. Mater. Trans., 2000, 31A: 1671
13 Salehi M S, Serajzadeh S. A neural network model for prediction of static recrystallization kinetics under non-isothermal conditions [J]. Comput. Mater. Sci., 2010, 49: 773
14 Chen F, Cui Z S, Chen S J. Recrystallization of 30Cr2Ni4MoV ultra-super-critical rotor steel during hot deformation. Part I: Dynamic recrystallization [J]. Mater. Sci. Eng., 2012, A528: 5073
15 Chen X M, Lin Y C, Wen D X, et al. Dynamic recrystallization behavior of a typical nickel-based superalloy during hot deformation [J]. Mater. Des., 2014, 57: 568
16 Tong J, Fu W T, Lin G, et al. Hot deformation behavior of 00Cr25Ni7Mo4N super duplex stainless steel [J]. J. Iorn. Steel Res., 2007, 19(10): 40
16 童 骏, 傅万堂, 林 刚等. 00Cr25Ni7Mo4N超级双相不锈钢的高温变形行为 [J]. 钢铁研究学报, 2007, 19(10): 40)
17 Farnoush H, Momeni A, Dehghani K, et al. Hot deformation characteristics of 2205 duplex stainless steel based on the behavior of constituent phases [J]. Mater. Des., 2010, 31: 220
18 Liu Z Y, Li C G, Zhao Y, et al. Control on microstructures and properties of economical duplex stainless steel and its manufacturing technology [J]. Angang. Technol., 2016, (2): 1
18 刘振宇, 李成刚, 赵 岩等. 节约型双相不锈钢组织性能控制与制造技术 [J]. 鞍钢技术, 2016, (2): 1)
19 Lu P P, Wang A Q, Xie J P, et al. Effect of aging on σ phase precipitation and properties of 4A duplex stainless steel [J]. Mater. Rev., 2017, 31(16): 76
19 卢盼盼, 王爱琴, 谢敬佩等. 时效处理对4A双相不锈钢σ相析出及性能的影响 [J]. 材料导报, 2017, 31(16): 76)
20 Zhang M, Zhang M, Lu X K, et al. Effects of Ni to Cr mass ratio in flux-cored wire powder on microstructureand mechanical properties of duplex stainless steel weld seam [J]. Mater. Mech. Eng., 2017, 41(6): 5
20 张 敏, 张 明, 芦晓康等. 焊丝药粉中镍铬质量比对双相不锈钢焊缝显微组织与力学性能的影响 [J]. 机械工程材料, 2017, 41(6): 5)
21 Han D, Jiang Y M, Deng B, et al. Effect of aging time on electrochemical corrosion behavior of 2101 duplex stainless steel [J]. Aata Metall. Sin., 2009, 45: 919
21 韩 冬, 蒋益明, 邓 博等. 时效时间对2101双相不锈钢电化学腐蚀行为的影响 [J]. 金属学报, 2009, 45: 919
22 Liu Y Y. Study on microstructure and property evolution of LDX 2101 during thermal deformation [D]. Hangzhou: Zhejiang University, 2013
22 刘彦妍. 2101双相不锈钢热变形过程微观组织与性能演变的研究 [D]. 杭州: 浙江大学, 2013
23 Feng F C, Hong H P, Xiao Y. Dynamic recrystallization rule and model of 42CrMo4 steel [A]. The 9th China Steel Conference (CSM Biennial Conference [C]. Beijing: Metallurgical Industry Press, 2013: 1
23 冯富春, 洪慧平, 肖 玉. 42CrMo4钢动态再结晶规律及动态再结晶模型研究 [A]. 第九届中国钢铁年会论文集 [C]. 北京: 冶金工业出版社, 2013: 1)
24 Ma B. Microscopic-macroscopic multi-parameter coupling model building for low-alloy steel strip hot rolling process [D]. Qinhuangdao: Yanshan University, 2011
24 马 博. 低合金钢板带热轧过程微宏观多参数耦合建模 [D]. 秦皇岛: 燕山大学, 2011
25 Balancin O, Hoffmann W A M, Jonas J J. Influence of microstructure on the flow behavior of duplex stainless steels at high temperatures [J]. Metall. Mater. Trans., 2000, 31A: 1353
26 Imbert C A C, McQueen H J. Peak strength, strain hardening and dynamic restoration of A2 and M2 tool steels in hot deformation [J]. Mater. Sci. Eng., 2001, A313: 88
27 Yue C X, Zhang L W, Liao S L, et al. Research on the dynamic recrystallization behavior of GCr15 steel [J]. Mater. Sci. Eng., 2009, A499: 177
28 Cao J R, Liu Z D, Cheng S C, et al. The influence of strain rate and temperature on flow stress and critical dynamic recrystallisation of T122 steel [J]. Acta Metall. Sin., 2007, 43: 35
28 曹金荣, 刘正东, 程世长等. 应变速率和变形温度对T122耐热钢流变应力和临界动态再结晶行为的影响 [J]. 金属学报, 2007, 43: 35
29 Quan G Z, Yu C T, Liu Y Y, et al. Characterization of dynamic rescrystallization behavior of 20MnNiMo steel by thermal deformation [J]. Trans. Mater. Heat Treat., 2013, 34(8): 177
29 权国政, 余春堂, 刘莹莹等. 20MnNiMo钢热塑性变形与动态再结晶软化的耦合行为 [J]. 材料热处理学报, 2013, 34(8): 177)
30 Wang Y M, Hamza A V, Ma E. Temperature-dependent strain rate sensitivity and activation volume of nanocrystalline Ni [J]. Acta Mater., 2006, 54: 2715
31 Chen L, Zhang Y J, Li F, et al. Modeling of dynamic recrystallization behavior of 21Cr-11Ni-N-RE lean austenitic heat-resistant steel during hot deformation [J]. Mater. Sci. Eng., 2016, A663: 141
32 Mirzadeh H, Najafizadeh A. Hot deformation and dynamic recrystallization of 17-4 PH stainless steel [J]. ISIJ Int., 2013, 53: 680
33 Mirzadeh H, Cabrera J M, Najafizadeh A, et al. EBSD study of a hot deformed austenitic stainless steel [J]. Mater. Sci. Eng., 2012, A538: 236
34 Sellars C M, McTegart W J. On the mechanism of hot deformation [J]. Acta Metall., 1966, 14: 1136
35 Iza-Mendia A, Piñol-Juez A, Urcola J J, et al. Microstructural and mechanical behavior of a duplex stainless steel under hot working conditions [J]. Metall. Mater. Trans., 1998, 29A: 2975
36 Schramm R E, Reed R P. Stacking fault energies of seven commercial austenitic stainless steels [J]. Metall. Trans., 1975, 6A: 1345
37 Dai Y J, Tang D, Mi Z L, et al. The influence of manganese on the stacking fault energy and deformation mechanisms of the TWIP steel [J]. J. Mater. Eng., 2009, (7): 39
37 代永娟, 唐 荻, 米振莉等. 锰元素对TWIP钢层错能和变形机制的影响 [J]. 材料工程, 2009, (7): 39)
38 Wang M H, Li Y F, Wang W H, et al. Quantitative analysis of work hardening and dynamic softening behavior of low carbon alloy steel based on the flow stress [J]. Mater. Des., 2013, 45: 384
39 Kim S I, Yoo Y C. Dynamic recrystallization behavior of AISI 304 stainless steel [J]. Mater. Sci. Eng., 2001, A311: 108
40 Mirzadeh H, Najafizadeh A. The rate of dynamic recrystallization in 17-4 PH stainless steel [J]. Mater. Des., 2010, 31: 4577
41 Wang J, Xiao H, Xie H B, et al. Study on hot deformation behavior of carbon structural steel with flow stress [J]. Mater. Sci. Eng., 2012, A539: 294
42 Jonas J J, Quelennec X, Jiang L, et al. The Avrami kinetics of dynamic recrystallization [J]. Acta Mater., 2009, 57: 2748
43 Liu C S. Measuring the phase content of dual-phases stainless steel accurately [J]. Phys. Test. Chem. Anal.,(Part A, Phys. Test.), 2003, 39: 414
43 刘持森. 双相不锈钢中相含量的精确测定 [J]. 理化检验-物理分册, 2003, 39: 414
44 Liu Y G, Li M Q, Luo J. The modelling of dynamic recrystallization in the isothermal compression of 300M steel [J]. Mater. Sci. Eng., 2013, A574: 1
[1] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[2] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[3] 娄峰, 刘轲, 刘金学, 董含武, 李淑波, 杜文博. 轧制态Mg-xZn-0.5Er合金板材组织及室温成形性能[J]. 金属学报, 2023, 59(11): 1439-1447.
[4] 吴彩虹, 冯迪, 臧千昊, 范诗春, 张豪, 李胤樹. 喷射成形AlSiCuMg合金的热变形组织演变及再结晶行为[J]. 金属学报, 2022, 58(7): 932-942.
[5] 任少飞, 张健杨, 张新房, 孙明月, 徐斌, 崔传勇. 新型Ni-Co基高温合金塑性变形连接中界面组织演化及愈合机制[J]. 金属学报, 2022, 58(2): 129-140.
[6] 姜伟宁, 武晓龙, 杨平, 顾新福, 解清阁. 热轧硅钢表层动态再结晶区形成规律及剪切织构特征[J]. 金属学报, 2022, 58(12): 1545-1556.
[7] 陈果, 王新波, 张仁晓, 马成悦, 杨海峰, 周利, 赵运强. 搅拌头转速对2507双相不锈钢搅拌摩擦加工组织及性能的影响[J]. 金属学报, 2021, 57(6): 725-735.
[8] 倪珂, 杨银辉, 曹建春, 王刘行, 刘泽辉, 钱昊. 18.7Cr-1.0Ni-5.8Mn-0.2NNi型双相不锈钢的大变形热压缩软化行为[J]. 金属学报, 2021, 57(2): 224-236.
[9] 邓亚辉, 杨银辉, 蒲超博, 倪珂, 潘晓宇. Mn23%CrNi型双相不锈钢高温拉伸行为的影响[J]. 金属学报, 2020, 56(7): 949-959.
[10] 陈文雄, 胡宝佳, 贾春妮, 郑成武, 李殿中. 热变形后Ni-30%Fe模型合金中奥氏体的亚动态软化行为[J]. 金属学报, 2020, 56(6): 874-884.
[11] 张阳, 邵建波, 陈韬, 刘楚明, 陈志永. Mg-5.6Gd-0.8Zn合金多向锻造过程中的变形机制及动态再结晶[J]. 金属学报, 2020, 56(5): 723-735.
[12] 王桂芹,王琴,车宏龙,李亚军,雷明凯. Si对铸造超高铬高碳双相钢组织及性能的影响[J]. 金属学报, 2020, 56(3): 278-290.
[13] 武华健, 程仁山, 李景仁, 谢东升, 宋锴, 潘虎成, 秦高梧. Al含量对Mg-Sn-Ca合金微观组织与力学性能的影响[J]. 金属学报, 2020, 56(10): 1423-1432.
[14] 张勇, 李鑫旭, 韦康, 万志鹏, 贾崇林, 王涛, 李钊, 孙宇, 梁红艳. 850 ℃涡轮盘用新型变形高温合金GH4975挤压棒材热变形规律研究[J]. 金属学报, 2020, 56(10): 1401-1410.
[15] 李旭,杨庆波,樊祥泽,呙永林,林林,张志清. 变形参数对2195 Al-Li合金动态再结晶的影响[J]. 金属学报, 2019, 55(6): 709-719.