Please wait a minute...
金属学报  2019, Vol. 55 Issue (7): 893-901    DOI: 10.11900/0412.1961.2018.00440
  本期目录 | 过刊浏览 |
GH984G合金在700 ℃水蒸气中的氧化行为
王常帅1(),郭莉莉1,唐丽英2,周荣灿2,郭建亭1,周兰章1
1. 中国科学院金属研究所 沈阳 110016
2. 西安热工研究院有限公司 西安 710032
Oxidation Behavior of GH984G Alloy in Steam at 700
Changshuai WANG1(),Lili GUO1,Liying TANG2,Rongcan ZHOU2,Jianting GUO1,Lanzhang ZHOU1
1. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2. Xi’an Thermal Power Research Institute Co. , Ltd. , Xi’an 710032, China
引用本文:

王常帅,郭莉莉,唐丽英,周荣灿,郭建亭,周兰章. GH984G合金在700 ℃水蒸气中的氧化行为[J]. 金属学报, 2019, 55(7): 893-901.
Changshuai WANG, Lili GUO, Liying TANG, Rongcan ZHOU, Jianting GUO, Lanzhang ZHOU. Oxidation Behavior of GH984G Alloy in Steam at 700 ℃[J]. Acta Metall Sin, 2019, 55(7): 893-901.

全文: PDF(18649 KB)   HTML
摘要: 

从氧化动力学、氧化层相组成及微观结构角度,研究了700 ℃超超临界电站用Ni-Fe-Cr基合金GH984G在700 ℃水蒸气中的氧化行为。结果表明:氧化行为符合抛物线规律,氧化过程受扩散控制,稳态增重速率约为8×10-4 g/(m2·h),为完全抗氧化级。氧化过程中首先在基体表面形成Cr2O3外氧化层,随后形成根状Al2O3内氧化层并在Cr2O3外氧化层表面形成少量粒状TiO2,最终形成外层Cr2O3、内层Al2O3的双层结构,长达2000 h蒸汽氧化过程中无其它氧化物形成且氧化层具有优异的稳定性。氧化初期氧化层表面Cr2O3为针片状,随后针片状Cr2O3发生团聚转变为胞状Cr2O3,进一步延长氧化时间胞状Cr2O3发生连接,转变为连续、致密的Cr2O3外氧化层。连续、致密且稳定的Cr2O3外氧化层和根状Al2O3内氧化层的氧化层结构使GH984G合金在700 ℃蒸汽条件下具有较低氧化速率和优异抗氧化性。

关键词 GH984G合金Ni-Fe-Cr基合金蒸汽氧化700 ℃超超临界电站    
Abstract

To produce abundant and cheap electricity in a cleaner way, the next generation of advanced ultra-supercritical (A-USC) coal-fired power plants with higher thermal efficiency will operate at service temperatures at 700 ℃ and steam pressures up to 35 MPa. However, the temperature capacity of the currently used ferritic or austenitic steels in USC plants at 600 ℃ cannot meet the requirements. GH984G is a newly developed Ni-Fe-Cr base alloy designed for A-USC, but its oxidation behavior in steam at 700 ℃ is unclear. In this work, the oxidation kinetics of GH984G alloy in steam at 700 ℃ was investigated by weighting specimens at intervals. Morphology, composition and phase constituent of the steam oxide scale were characterized using SEM, EDS and XRD. The results show that the oxidation of GH984G alloy follows a parabolic law with a rate constant of 0.00521 mg/(cm2·h1/2) and steady weight gain rate of 8×10-4 g/(m2·h). The oxide scale mainly consists of Cr2O3 and Al2O3. Meanwhile, a small amount of TiO2 was observed. The oxide scale of Cr2O3 forms on the alloy surface and then the internal oxidation of Al to be Al2O3 occurs along the grain boundaries of the matrix alloy and TiO2 forms at the surface of the external oxide scale. The morphology of Cr2O3 at the surface of the oxide scale is needle-like at the initial oxidation stage and then the agglomeration of Cr2O3 was observed and the cellular shape forms. Finally, the coalescence of the cellular Cr2O3 appears and the flat surface of the external oxide scale forms. The excellent oxidation resistant of GH984G alloy in steam at 700 ℃ can be attributed to the compact external oxide scale of Cr2O3 and the root-like internal oxide scale of Al2O3.

Key wordsGH984G alloy    Ni-Fe-Cr base alloy    steam oxidation    700 ℃ ultra-supercritical coal-fired power plant
收稿日期: 2018-09-14     
ZTFLH:  TG111.8  
基金资助:国家重点研发计划项目(No.2017YFB0305204);国家高技术研究发展计划项目(No.2012AA03A501);国家自然科学基金项目(No.51301171);国家能源局项目(No.NY20150102);四川省科技计划项目(No.2016JZ0036)
作者简介: 王常帅,男,1983年生,副研究员,博士
图1  GH984G合金在700 ℃蒸汽条件下的氧化动力学曲线
图2  GH984G合金在700 ℃蒸汽条件下氧化不同时间后表面氧化层的XRD谱
图3  GH984G合金在700 ℃蒸汽条件下氧化不同时间后表面形貌的SEM像
t / hOFeCrNiTiAlMo
10020.316.833.825.51.50.51.6
30026.67.547.612.64.50.30.9
50030.93.757.13.53.90.20.7
100029.62.160.73.03.90.20.5
160029.11.263.42.63.20.10.4
200025.81.367.81.73.10.20.1
表1  GH984G合金在700 ℃蒸汽条件下氧化不同时间后氧化层表面成分EDS分析
图4  GH984G合金在700 ℃蒸汽条件下氧化不同时间后截面形貌的SEM像
图5  GH984G合金在700 ℃蒸汽条件下氧化2000 h后的截面形貌和元素面分布
图6  GH984G合金在700 ℃蒸汽条件下氧化2000 h后的截面形貌和元素线分布
[1] Bugge J, Kj?r S, Blum R. High-efficiency coal-fired power plants development and perspectives [J]. Energy, 2006, 31: 1437
[2] Zhou L Z. Recent development and material selection for 700 ℃ ultra-supercritical coal-fired power plants [A]. First Symposia on Heat Resistant Materials Used for 700 ℃ Ultra-supercritical Coal-fired Power Plants [C]. Beijing: The Secretariat of China USC Coal-fired Power Generation Technology Innovation Consortium, 2011: 13
[2] (周兰章. 700 ℃超超临界机组耐热材料的研制现状及选材思考 [A]. 国家700 ℃计划耐热材料第一次专题研讨会论文集 [C]. 北京: 国家700 ℃超超临界燃煤发电技术创新联盟秘书处, 2011: 13)
[3] Abe F. Research and development of heat-resistant materials for advanced USC power plants with steam temperatures of 700 ℃ and above [J]. Engineering, 2015, 1: 211
[4] Kl?wer J, Husemann R U, Bader M. Development of nickel alloys based on alloy 617 for components in 700 ℃ power plants [J]. Procedia Eng., 2013, 55: 226
[5] Zhao S Q, Xie X S, Smith G D, Patel S J. Research and improvement on structure stability and corrosion resistance of nickel-base superalloy INCONEL alloy 740 [J]. Mater. Des., 2006, 27: 1120
[6] Liu Z D, Chong Y, Bao H S, et al. Boiler tube for 700 ℃ steam parameter thermal power generating unit and preparation method thereof [P]. Chin Pat, 103276251, 2013
[6] (刘正东, 崇 严, 包汉生等. 一种700 ℃蒸汽参数火电机组用锅炉管及其制备方法 [P]. 中国专利, 103276251, 2013)
[7] Wei K, Zhang M C, Xie X S. Recrystallization mechanisms in hot working processes of a nickel-based alloy for ultra-supercritical power plant application [J]. Acta Metall. Sin., 2017, 53: 1611
[7] (韦 康, 张麦仓, 谢锡善. 超超临界电站用镍基合金热加工过程的再结晶机理 [J]. 金属学报, 2017, 53: 1611)
[8] Shingledecker J P, Evans N D. Creep-rupture performance of 0.07C-23Cr-45Ni-6W-Ti,Nb austenitic alloy (HR6W) tubes [J]. Int. J. Press. Vessels Pip., 2010, 87: 345
[9] Tan M L, Wang C S, Guo Y A, et al. Influence of Ti/Al ratios on γ′ coarsening behavior and tensile properties of GH984G alloy during long-term thermal exposure [J]. Acta Metall. Sin., 2014, 50: 1260
[9] (谭梅林, 王常帅, 郭永安等. Ti/Al比对GH984G合金长期时效过程中γ′沉淀相粗化行为及拉伸性能的影响 [J]. 金属学报, 2014, 50: 1260)
[10] Wang C S, Guo Y A, Guo J T, et al. Investigation and improvement on structural stability and stress rupture properties of a Ni-Fe based alloy [J]. Mater. Des., 2015, 88: 790
[11] Wang C S, Guo Y A, Guo J T, et al. Microstructural changes and their effect on tensile properties of a Ni-Fe based alloy during long-term thermal exposure [J]. Mater. Sci. Eng., 2016, A670: 178
[12] Wang C S, Guo Y A, Guo J T, et al. Microstructural characteristics and mechanical properties of a Mo modified Ni-Fe-Cr based alloy [J]. Mater. Sci. Eng., 2016, A675: 314
[13] Wang C S, Su H J, Guo Y A, et al. Solidification characteristics and segregation behavior of a P-containing Ni-Fe-Cr-based alloy [J]. Appl. Phys., 2017, 123A: 587
[14] Guo Y, Jia J M, Hou S F, et al. Steam oxidation behavior of domestic TP347H FG steel [J]. Corros. Sci. Prot. Technol., 2011, 23: 505
[14] (郭 岩, 贾建民, 侯淑芳等. 国产TP347H FG钢的水蒸汽氧化行为研究 [J]. 腐蚀科学与防护技术, 2011, 23: 505)
[15] Yuan J T, Wu X M, Wang W, et al. Effect of grain size on oxidation of heat-resistant steels in high temperature water steam [J]. J. Chin. Soc. Corros. Prot., 2013, 33: 257
[15] (袁军涛, 吴细毛, 王 文等. 晶粒尺寸对耐热钢在高温水蒸汽中的氧化行为的影响 [J]. 中国腐蚀与防护学报, 2013, 33: 257)
[16] Bai Y, Liu Z D, Xie J X, et al. Effect of pre-oxidation treatment on the behavior of high temperature oxidation in steam of G115 steel [J]. Acta Metall. Sin., 2018, 54: 895
[16] (白 银, 刘正东, 谢建新等. 预氧化处理对G115钢高温蒸气氧化行为的影响 [J]. 金属学报, 2018, 54: 895)
[17] Otsuka N, Fujikawa H. Scaling of austenitic stainless steels and nickel-base alloys in high-temperature steam at 973 K [J]. Corrosion, 1991, 47: 240
[18] Quadakkers W J, Zurek J, H?nsel. Effect of water vapor on high-temperature oxidation of FeCr alloys [J]. JOM, 2009, 61(7): 44
[19] Garcia-Fresnillo L, Chyrkin A, B?hme C, et al. Oxidation behaviour and microstructural stability of alloy 625 during long-term exposure in steam [J]. J. Mater. Sci., 2014, 49: 6127
[20] Intiso L, Johansson L G, Svensson J E, et al. Oxidation of Sanicro 25 (42Fe22Cr25NiWCuNbN) in O2 and O2+H2O environments at 600-750 ℃ [J]. Oxid. Met., 2015, 83: 367
[21] Yang Z, Lu J T, Yuan Y, et al. Oxidation behavior of a new Fe-Ni-Cr-based alloy in pure steam at 750 ℃ [J]. Mater. High Temp., 2016, 33: 164
[22] Liu G M, Wang C F, Yu F, et al. Evolution of oxide film of T91 steel in water vapor atmosphere at 750 ℃ [J]. Oxid. Met., 2014, 81: 383
[23] Dudziak T, ?ukaszewicz M, Simms N, et al. Analysis of high temperature steam oxidation of superheater steels used in coal fired boilers [J]. Oxid. Met., 2016, 85: 171
[24] Peng X, Shen J N, Hu W S, et al. A comparative investigation of oxidation performance of superalloys M17 and M17F at high temperatures [J]. J. Chin. Soc. Corros. Prot., 1996, 16: 20
[24] (彭 晓, 沈嘉年, 胡武生等. 高温合金M17和M17F抗氧化性能的比较研究 [J]. 中国腐蚀与防护学报, 1996, 16: 20)
[25] Li Y, Shang H B, Guo J T, et al. Isothermal oxidation behavior of a cast Ni-base superalloy K35 [J]. Acta Metall. Sin., 2003, 39: 749
[25] (李 云, 尚海波, 郭建亭等. 铸造镍基高温合金K35的高温氧化行为 [J]. 金属学报, 2003, 39: 749)
[26] Cao J D, Zhang J S, Chen R F, et al. High temperature oxidation behavior of Ni-based superalloy GH202 [J]. Mater. Charact., 2016, 118: 122
[27] Ren X, Sridharan K, Allen T R. Corrosion behavior of alloys 625 and 718 in supercritical water [J]. Corrosion, 2007, 63: 603
[28] Wang C S, Wang T T, Guo J T, et al. Ni-Fe based alloy GH984G used for 700 ℃ coal-fired power plants [A]. Energy Materials 2017 [C]. Cham: Springer, 2017: 143
[29] Rothman S J, Nowicki L J, Murch G E. Self-diffusion in austenitic Fe-Cr-Ni alloys [J]. J. Phys., 1980, 10F: 383
[30] Pérez-González F A, Garza-Montes-de Oca N F, Colás R. High temperature oxidation of the Haynes 282? nickel-based superalloy [J]. Oxid. Met., 2014, 82: 145
[31] Abe F, Araki H, Yoshida H, et al. The role of aluminum and titanium on the oxidation process of a nickel-base superalloy in steam at 800 ℃ [J]. Oxid. Met., 1987, 27: 21
[1] 谭梅林, 王常帅, 郭永安, 郭建亭, 周兰章. Ti/Al比对GH984G合金长期时效过程中γ′沉淀相粗化行为及拉伸性能的影响[J]. 金属学报, 2014, 50(10): 1260-1268.