Please wait a minute...
金属学报  2019, Vol. 55 Issue (6): 709-719    DOI: 10.11900/0412.1961.2018.00430
  本期目录 | 过刊浏览 |
变形参数对2195 Al-Li合金动态再结晶的影响
李旭1,杨庆波1,樊祥泽1,呙永林2,林林2,张志清1,3()
1. 重庆大学材料科学与工程学院 重庆 400044
2. 西南铝业(集团)有限责任公司 重庆 401326
3. 重庆西彭产业工业园区 重庆 401326
Influence of Deformation Parameters on Dynamic Recrystallization of 2195 Al-Li Alloy
Xu LI1,Qingbo YANG1,Xiangze FAN1,Yonglin GUO2,Lin LIN2,Zhiqing ZHANG1,3()
1. College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
2. Southwest Aluminum Group Co. , Ltd. , Chongqing 401326, China
3. Chongqing Xipeng Industrial Park, Chongqing 401326, China
全文: PDF(34712 KB)   HTML
摘要: 

在应变速率0.01~1 s-1、变形温度350~500 ℃下,通过平面应变热压缩实验研究了2195 Al-Li合金不同热变形条件下的动态再结晶(DRX)临界条件,对动态再结晶机制进行了讨论,并通过EBSD和TEM等手段分析了变形参数对不同类型动态再结晶行为的影响。结果表明,动态再结晶临界应变(εc)随着Zener-Hollomon参数值(Z)的降低而降低;动态再结晶在低Z值的变形条件下进行得更充分,以不连续动态再结晶(DDRX)为主,仅发现有少量的连续动态再结晶(CDRX);连续和不连续动态再结晶都更容易在低的Z值下形成,而几何动态再结晶(GDRX)在Z值升高到一定程度才出现,并且随着Z值的进一步升高而增加,几何动态再结晶在一定程度上增加了晶粒数目,从而使动态再结晶分数略有升高。

关键词 2195 Al-Li合金平面应变压缩变形参数动态再结晶    
Abstract

Al-Li alloys have attracted extensive attentions as promising structural materials in aerospace industries due to their excellent mechanical properties, and are usually formed through a variety of hot workings such as rolling and forging. Dynamic recrystallization (DRX) is considered as one of the key microstructure evolutions of Al alloys during hot working, and many works have been done concerning with DRX. However, the influence of deformation parameters on different types of DRX of 2195 Al-Li alloy is still unclear. In this work, hot plane strain compression tests were conducted at the strain rate range from 0.01 s-1 to 1 s-1 and the temperature range from 350 ℃ to 500 ℃ to investigate the critical condition of dynamic recrystallization of 2195 Al-Li alloy under different hot deformation conditions, DRX mechanisms were discussed, and the influence of deformation parameters on different types of DRX was revealed using EBSD and TEM. The results showed that the critical strain decreased with the decrease of Zener-Hollomon parameter (Z), DRX was more sufficient in lower Z value, and discontinuous dynamic recrystallization (DDRX) was primary type while only a little continuous dynamic recrystallization (CDRX) was found. Both CDRX and DDRX were promoted in lower Z value, geometric dynamic recrystallization (GDRX) only occurred in high Z value and increased with further increase of Z value, and the appearance of GDRX was accompanied by the increase of the number of DRX grains so that the DRX fraction slightly increased.

Key words2195 Al-Li alloy    plane strain compression    deformation parameters    dynamic recrystallization
收稿日期: 2018-09-11      出版日期: 2019-03-01
ZTFLH:  TG146.2  
基金资助:中央高校基本科研业务费专项资金项目(No.106112017CDJQJ328840)
通讯作者: 张志清     E-mail: zqzhang@cqu.edu.cn
Corresponding author: Zhiqing ZHANG     E-mail: zqzhang@cqu.edu.cn
作者简介: 李 旭,男,1994年生,硕士生

引用本文:

李旭,杨庆波,樊祥泽,呙永林,林林,张志清. 变形参数对2195 Al-Li合金动态再结晶的影响[J]. 金属学报, 2019, 55(6): 709-719.
Xu LI,Qingbo YANG,Xiangze FAN,Yonglin GUO,Lin LIN,Zhiqing ZHANG. Influence of Deformation Parameters on Dynamic Recrystallization of 2195 Al-Li Alloy. Acta Metall, 2019, 55(6): 709-719.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2018.00430      或      http://www.ams.org.cn/CN/Y2019/V55/I6/709

图1  试样分析位置
图2  2195 Al-Li合金真应力-应变曲线
图3  2195 Al-Li合金θ-σ与(d2θ/dσ2)-σ曲线
图4  2195 Al-Li合金的再结晶临界应力曲线及lnεc-lnZ关系图

Strain rate / s-1

Temperature / ℃
350400450500
0.0149.145.141.738.7
0.151.447.444.041.0
153.749.746.343.3
表1  各变形条件下的lnZ值
图5  2195 Al-Li合金变形组织的EBSD像
图6  图5f中晶界的取向差分布
图7  各类动态再结晶的体积分数与再结晶平均晶粒尺寸
图8  2195 Al-Li合金变形组织的TEM像
图9  T1相高分辨TEM像
[1] Dursun T, Soutis C. Recent developments in advanced aircraft aluminium alloys [J]. Mater. Des., 2014, 56: 862
doi: 10.1016/j.matdes.2013.12.002
[2] Zheng Z Q, Li J F, Chen Z G, et al. Alloying and microstructural evolution of Al-Li alloys [J]. Chin. J. Nonferrous Met., 2011, 21: 2337
[2] (郑子樵, 李劲风, 陈志国等. 铝锂合金的合金化与微观组织演化 [J]. 中国有色金属学报, 2011, 21: 2337)
[3] Jiang N, Li J F, Zheng Z Q, et al. Simulation on flow stress of multi-pass hot deformation of 2195 Al-Li alloy [J]. Rare Met. Mater. Eng., 2007, 36: 949
doi: 10.3321/j.issn:1002-185X.2007.06.002
[3] (蒋 呐, 李劲风, 郑子樵等. 2195铝锂合金多道次热变形流变应力的模拟研究 [J]. 稀有金属材料与工程, 2007, 36: 949)
doi: 10.3321/j.issn:1002-185X.2007.06.002
[4] Williams J C, Starke E A Jr. Progress in structural materials for aerospace systems [J]. Acta Mater., 2003, 51: 5775
doi: 10.1016/j.actamat.2003.08.023
[5] Nayan N, Murty S V S N, Chhangani S, et al. Effect of temperature and strain rate on hot deformation behavior and microstructure of Al-Cu-Li alloy [J]. J. Alloys Compd., 2017, 723: 548
doi: 10.1016/j.jallcom.2017.06.165
[6] Zhu R H, Liu Q, Li J F, et al. Dynamic restoration mechanism and physically based constitutive model of 2050 Al-Li alloy during hot compression [J]. J. Alloys Compd., 2015, 650: 75
doi: 10.1016/j.jallcom.2015.07.182
[7] Han D F, Zheng Z Q, Jiang N, et al. Flow stress of high-strength weldable 2195 aluminium-lithium alloy during hot compression deformation [J]. Chin. J. Nonferrous Met., 2004, 14: 2090
doi: 10.3321/j.issn:1004-0609.2004.12.019
[7] (韩冬峰, 郑子樵, 蒋 呐等. 高强可焊2195铝-锂合金热压缩变形的流变应力 [J]. 中国有色金属学报, 2004, 14: 2090)
doi: 10.3321/j.issn:1004-0609.2004.12.019
[8] Shen B, Deng L, Wang X Y. A new dynamic recrystallisation model of an extruded Al-Cu-Li alloy during high-temperature deformation [J]. Mater. Sci. Eng., 2015, A625: 288
doi: 10.1016/j.msea.2014.11.095
[9] Li Y P, Onodera E, Matsumoto H, et al. Correcting the stress-strain curve in hot compression process to high strain level [J]. Metall. Mater. Trans., 2009, 40A: 1255
doi: 10.1007/s11661-009-9783-7
[10] Pan H B, Tang D, Hu S P, et al. Study on plane strain physical compression technology [J]. Forg. Stamp. Technol., 2008, 33(2): 75
doi: 10.3969/j.issn.1000-3940.2008.02.019
[10] (潘红波, 唐 荻, 胡水平等. 平面应变压缩技术的研究 [J]. 锻压技术, 2008, 33(2): 75)
doi: 10.3969/j.issn.1000-3940.2008.02.019
[11] Liu J, Cui Z, Ruan L. A new kinetics model of dynamic recrystallization for magnesium alloy AZ31B [J]. Mater. Sci. Eng., 2011, A529: 300
doi: 10.1016/j.msea.2011.09.032
[12] Li H Y, Ou L, Zheng Z Q. Study on the anisotropy of 2195 Al-Li alloy [J]. J. Mater. Eng., 2005, (10): 31
doi: 10.3969/j.issn.1001-4381.2005.10.008
[12] (李红英, 欧 玲, 郑子樵. 2195铝锂合金的各向异性研究 [J]. 材料工程, 2005, (10): 31)
doi: 10.3969/j.issn.1001-4381.2005.10.008
[13] Rioja R J. Fabrication methods to manufacture isotropic Al-Li alloys and products for space and aerospace applications [J]. Mater. Sci. Eng., 1998, A257: 100
doi: 10.1016/s0921-5093(98)00827-2
[14] Sakai T, Belyakov A, Kaibyshev R, et al. Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions [J]. Prog. Mater. Sci., 2014, 60: 130
doi: 10.1016/j.pmatsci.2013.09.002
[15] Sun Z C, Zheng L S, Yang H. Softening mechanism and microstructure evolution of as-extruded 7075 aluminum alloy during hot deformation [J]. Mater. Charact., 2014, 90: 71
doi: 10.1016/j.matchar.2014.01.019
[16] Yang Q B, Wang X Z, Li X, et al. Hot deformation behavior and microstructure of AA2195 alloy under plane strain compression [J]. Mater. Charact., 2017, 131: 500
doi: 10.1016/j.matchar.2017.06.001
[17] Yang Q Y, Deng Z H, Zhang Z Q, et al. Effects of strain rate on flow stress behavior and dynamic recrystallization mechanism of Al-Zn-Mg-Cu aluminum alloy during hot deformation [J]. Mater. Sci. Eng., 2016, A662: 204
doi: 10.1016/j.msea.2016.03.027
[18] Yang X S, Chai L J, Huang W J, et al. EBSD analysis on restoration mechanism of as-extruded AA2099 Al-Li alloy after various thermomechanical processes [J]. Mater. Chem. Phys., 2017, 191: 99
doi: 10.1016/j.matchemphys.2017.01.044
[19] Yang S L, Shen J, Yan X D, et al. Dynamic recrystallization kinetics and nucleation mechanism of Al-Cu-Li alloy based on flow behavior [J]. Chin. J. Nonferrous Met., 2016, 26: 365
[19] (杨胜利, 沈 健, 闫晓东等. 基于Al-Cu-Li合金流变行为的动态再结晶动力学与形核机制 [J]. 中国有色金属学报, 2016, 26: 365)
[20] Chen X H, Chen K H, Dong P X, et al. Microstructure evolution and dynamic recrystallization model of 7085 aluminum alloy during hot deformation [J]. Chin. J. Nonferrous Met., 2013, 23: 44
[20] (陈学海, 陈康华, 董朋轩等. 7085铝合金的热变形组织演变及动态再结晶模型 [J]. 中国有色金属学报, 2013, 23: 44)
[21] Xiang S, Liu D Y, Zhu R H, et al. Hot deformation behavior and microstructure evolution of 1460 Al-Li alloy [J]. Trans. Nonferrous Met. Soc. China, 2015, 25: 3855
doi: 10.1016/S1003-6326(15)64033-X
[22] Yin H, Li H Y, Su X J, et al. Processing maps and microstructural evolution of isothermal compressed Al-Cu-Li alloy [J]. Mater. Sci. Eng., 2013, A586: 115
doi: 10.1016/j.msea.2013.07.084
[23] Huang K, Logé R E. A review of dynamic recrystallization phenomena in metallic materials [J]. Mater. Des., 2016, 111: 548
doi: 10.1016/j.matdes.2016.09.012
[24] Kumar S, Pink E. Serrated flow in aluminium alloys containing lithium [J]. Acta Mater., 1997, 45: 5295
doi: 10.1016/S1359-6454(97)00149-3
[25] Poliak E I, Jonas J J. Initiation of dynamic recrystallization in constant strain rate hot deformation [J]. ISIJ Int., 2007, 43: 684
[26] Jonas J J, Quelennec X, Jiang L, et al. The Avrami kinetics of dynamic recrystallization [J]. Acta Mater., 2009, 57: 2748
doi: 10.1016/j.actamat.2009.02.033
[27] Zener C, Hollomon J H. Effect of strain rate upon plastic flow of steel [J]. J. Appl. Phys., 1944, 15: 22
doi: 10.1063/1.1707363
[28] Sellars C M, McTegart W J. On the mechanism of hot deformation [J]. Acta Metall., 1966, 14: 1136
doi: 10.1016/0001-6160(66)90207-0
[29] Li X, Fan X Z, Yang Q B, et al. Flow behavior and microstructure of 2195 Al-Li alloy during plane strain compression [J]. Chin. J. Nonferrous Met., 2018, 28: 1980
doi: 10.19476/j.ysxb.1004.0609.2018.10.04
[29] (李 旭, 樊祥泽, 杨庆波等. 2195铝锂合金平面应变压缩的流变行为与微观组织 [J]. 中国有色金属学报, 2018, 28: 1980)
doi: 10.19476/j.ysxb.1004.0609.2018.10.04
[30] Liu J, Li J Q, Cui Z S, et al. A new one-parameter kinetics model of dynamic recrystallization and grain size predication [J]. Acta Metall. Sin., 2012, 48: 1510
doi: 10.3724/SP.J.1037.2012.00486
[30] (刘 娟, 李居强, 崔振山等. 新的单参数动态再结晶动力学建模及晶粒尺寸预测 [J]. 金属学报, 2012, 48: 1510)
doi: 10.3724/SP.J.1037.2012.00486
[31] Murty S V S N, Sarkar A, Narayanan P R, et al. Microstructure and micro-texture evolution during large strain deformation of aluminium alloy AA 2219 [J]. Mater. Sci. Eng., 2016, A677: 41
[32] Kapoor R, Shekhawat S K, Samajdar I. Flow localization in an Al-2.5Mg alloy after severe plastic deformation [J]. Mater. Sci. Eng., 2014, A611: 114
doi: 10.1016/j.msea.2014.05.080
[33] Gourdet S, Montheillet F. An experimental study of the recrystallization mechanism during hot deformation of aluminium [J]. Mater. Sci. Eng., 2000, A283: 274
doi: 10.1016/S0921-5093(00)00733-4
[34] Kassner M E, Barrabes S R. New developments in geometric dynamic recrystallization [J]. Mater. Sci. Eng., 2005, A410-411: 152
doi: 10.1016/j.msea.2005.08.052
[35] Blum W, Zhu Q, Merkel R, et al. Geometric dynamic recrystallization in hot torsion of Al-5Mg-0.6Mn (AA5083) [J]. Mater. Sci. Eng., 1996, A205: 23
doi: 10.1016/0921-5093(95)09990-5
[36] Henshall G A, Kassner M E, McQueen H J. Dynamic restoration mechanisms in Al-5.8 at. pct Mg deformed to large strains in the solute drag regime [J]. Metall. Trans., 1992, 23A: 881
doi: 10.1007/BF02675565
[37] Kassner M E. Large-strain deformation of aluminum single crystals at elevated temperature as a test of the geometric-dynamic-recrystallization concept [J]. Metall. Trans., 1989, 20A: 2182
[38] Cram D G, Zurob H S, Brechet Y J M, et al. Modelling discontinuous dynamic recrystallization using a physically based model for nucleation [J]. Acta Mater., 2009, 57: 5218
doi: 10.1016/j.actamat.2009.07.024
[39] McQueen H J. Development of dynamic recrystallization theory [J]. Mater. Sci. Eng., 2004, A387-389: 203
doi: 10.1016/j.msea.2004.01.064
[40] Gourdet S, Montheillet F. A model of continuous dynamic recrystallization [J]. Acta Mater., 2003, 51: 2685
doi: 10.1016/S1359-6454(03)00078-8
[41] Jazaeri H, Humphreys F J. The transition from discontinuous to continuous recrystallization in some aluminium alloys: II—Annealing behaviour [J]. Acta Mater., 2004, 52: 3251
doi: 10.1016/j.actamat.2004.03.031
[42] Liu W Y, Zhao H, Li D, et al. Hot deformation behavior of AA7085 aluminum alloy during isothermal compression at elevated temperature [J]. Mater. Sci. Eng., 2015, A596: 176
doi: 10.1016/j.msea.2013.12.012
[43] Wu B, Li M Q, Ma D W. The flow behavior and constitutive equations in isothermal compression of 7050 aluminum alloy [J]. Mater. Sci. Eng., 2012, A542: 79
doi: 10.1016/j.msea.2012.02.035
[44] Yan J, Pan Q L, Li B, et al. Research on the hot deformation behavior of Al-6.2Zn-0.70Mg-0.3Mn-0.17Zr alloy using processing map [J]. J. Alloys Compd., 2015, 632: 549
doi: 10.1016/j.jallcom.2015.01.228
[45] Mao B P, Yan X D, Shen J. Precipitation behavior of T1 phase during thermo-mechanical treatment of 2197 Al-Li alloy [J]. Chin. J. Nonferrous Met., 2015, 25: 2366
[45] (毛柏平, 闫晓东, 沈 健. 2197铝锂合金形变热处理中T1相的析出行为 [J]. 中国有色金属学报, 2015, 25: 2366)
[46] Robson J D, Henry D T, Davis B. Particle effects on recrystallization in magnesium-manganese alloys: Particle-stimulated nucleation [J]. Acta Mater., 2009, 57: 2739
doi: 10.1016/j.actamat.2009.02.032
[1] 邓亚辉, 杨银辉, 曹建春, 钱昊. 23Cr-2.2Ni-6.3Mn-0.26NNi型双相不锈钢动态再结晶行为研究[J]. 金属学报, 2019, 55(4): 445-456.
[2] 万志鹏, 王涛, 孙宇, 胡连喜, 李钊, 李佩桓, 张勇. GH4720Li合金热变形过程动态软化机制[J]. 金属学报, 2019, 55(2): 213-222.
[3] 钟茜婷, 王磊, 刘峰. Incoloy 028合金不连续动态再结晶中链状组织形成机理研究[J]. 金属学报, 2018, 54(7): 969-980.
[4] 苏煜森, 杨银辉, 曹建春, 白于良. 节Ni型2101双相不锈钢的高温热加工行为研究[J]. 金属学报, 2018, 54(4): 485-493.
[5] 王涛, 万志鹏, 孙宇, 李钊, 张勇, 胡连喜. 镍基变形高温合金动态软化行为与组织演变规律研究[J]. 金属学报, 2018, 54(1): 83-92.
[6] 蔡贇,孙朝阳,万李,阳代军,周庆军,苏泽兴. AZ80镁合金动态再结晶软化行为研究*[J]. 金属学报, 2016, 52(9): 1123-1132.
[7] 高博,王磊,梁涛沙,刘杨,宋秀,曲敬龙. 定向凝固U720Li合金的高温塑性变形行为*[J]. 金属学报, 2016, 52(4): 437-444.
[8] 袁晓云, 陈礼清. 一种高锰奥氏体TWIP钢的高温热变形与再结晶行为*[J]. 金属学报, 2015, 51(6): 651-658.
[9] 鲁世强, 王克鲁, 李鑫, 刘诗彪. 一种模拟和预测金属锻造过程动态再结晶的新方法[J]. 金属学报, 2014, 50(9): 1128-1136.
[10] 张飞, 沈健, 闫晓东, 孙建林, 蒋呐, 周华. 2099合金热变形过程中的动态软化机制*[J]. 金属学报, 2014, 50(6): 691-699.
[11] 韩忠, 姚斌, 卢柯. 纳米结构Cu中动态再结晶主导的磨损机制*[J]. 金属学报, 2014, 50(2): 238-244.
[12] 孔凡涛,崔宁,陈玉勇,熊宁宁. Ti-43Al-9V-Y合金的高温变形行为研究[J]. 金属学报, 2013, 49(11): 1363-1368.
[13] 温道胜,宗影影,徐文臣,杨单媚,单德彬. 0.037%H对铸态Ti-45Al-5Nb-0.8Mo-0.3Y合金高温变形行为的影响[J]. 金属学报, 2013, 49(11): 1428-1432.
[14] 余晖 KIM Youngmin 于化顺 YOU Bongsun 闵光辉. Mg-Zn-Zr-Ce合金高温变形行为与热加工性能研究[J]. 金属学报, 2012, 48(9): 1123-1131.
[15] 田宇兴 李述军 郝玉琳 杨锐. Ti2448合金高温变形行为及组织演变机制的转变[J]. 金属学报, 2012, 48(7): 837-844.