Please wait a minute...
金属学报  2019, Vol. 55 Issue (3): 389-398    DOI: 10.11900/0412.1961.2018.00399
  本期目录 | 过刊浏览 |
Er对Mg-5Zn-xEr镁合金热裂敏感性的影响
刘耀鸿,王朝辉(),刘轲,李淑波,杜文博
北京工业大学材料科学与工程学院 北京 100124
Effects of Er on Hot Cracking Susceptibility of Mg-5Zn-xEr Magnesium Alloys
Yaohong LIU,Zhaohui WANG(),Ke LIU,Shubo LI,Wenbo DU
College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
引用本文:

刘耀鸿,王朝辉,刘轲,李淑波,杜文博. Er对Mg-5Zn-xEr镁合金热裂敏感性的影响[J]. 金属学报, 2019, 55(3): 389-398.
Yaohong LIU, Zhaohui WANG, Ke LIU, Shubo LI, Wenbo DU. Effects of Er on Hot Cracking Susceptibility of Mg-5Zn-xEr Magnesium Alloys[J]. Acta Metall Sin, 2019, 55(3): 389-398.

全文: PDF(11584 KB)   HTML
摘要: 

采用优化的RDG (Rappaz-Drezet-Gremaud)热裂模型预测了Mg-5Zn-xEr (x=0.83、1.25、2.5、5,质量分数,%)三元多相合金的铸造热裂敏感性,并利用“约束杆”钢模铸造(CRC)实验评价了该合金的热裂敏感性。结果表明,优化的RDG热裂模型可准确地预测Mg-5Zn-xEr镁合金的热裂敏感性:随着Er含量的增加,合金的热裂敏感性呈先增加后降低的趋势,当Er含量为2.5%时合金的热裂敏感性最高,当Er含量为5.0%时合金的热裂敏感性最低,与实验结果相一致。对铸件凝固曲线、相组成、微观组织等进一步分析表明,当Er含量提高至2.5%时,合金凝固过程发生包晶反应生成I相的同时消耗了液相,并且扩大了合金的凝固温度区间,使合金的热裂敏感性上升;Er含量继续提高至5.0%时,合金在凝固过程中发生L→α-Mg+W的共晶反应,凝固温度区间减小,有利于凝固后期枝晶间裂纹的补缩,显著降低了合金的热裂敏感性。

关键词 RDG模型Mg-Zn-Er合金热裂敏感性微观组织    
Abstract

Mg-Zn-Er casting magnesium alloys have good properties, such as high specific strength, high specific stiffness and remarkable temperature creep properties. Current researches mainly focused on the phases and mechanical properties at room and high temperatures. However, the effect of Er on hot cracking susceptibility of Mg-5Zn-xEr magnesium alloys was barely studied. In this work, a modified RDG (Rappaz-Drezet-Gremaud) model for predicting the hot cracking susceptibility of Mg-5Zn-xEr (x=0.83, 1.25, 2.5, 5, mass fraction, %) ternary alloys was proposed, which considered the effects of phase and solidification temperature range on the hot cracking susceptibility of the multiphase alloys. And, the hot cracking susceptibility was evaluated by the experiment of constrained rod casting (CRC). The results indicated that the modified RDG model could accurately predict the hot cracking susceptibility of Mg-5Zn-xEr magnesium alloys. The hot cracking susceptibility increased with the addition of Er up to 2.5%, and Mg-5Zn-2.5Er alloy showed the maximal hot cracking susceptibility; when the addition of Er increased to 5.0%, Mg-5Zn-5Er alloy exhibited the minimal hot cracking susceptibility. The calculated results were consistent with the experimental ones. Further analysis on the casting solidification curves, phases and microstructures showed that I-phase precipitated by peritectic reaction during solidification of Mg-5Zn-2.5Er alloy depleted liquid phases and extended the solidification temperature range of the alloy, leading to the hot cracking susceptibility increasing. The Mg-5Zn-5Er alloy underwent eutectic reaction of L→α-Mg+W during solidification, which reduced the solidification temperature range. Meanwhile, this process was beneficial to feeding the interdendritic hot cracking in the terminal period of solidification, which significantly decreased the hot cracking susceptibility of Mg-5Zn-5Er alloy.

Key wordsRDG model    Mg-Zn-Er alloy    hot cracking susceptibility    microstructure
收稿日期: 2018-08-30     
ZTFLH:  TG146  
基金资助:国家重点研发计划项目(2016YFB0301001);北京市自然科学基金项目(2162003)
作者简介: 刘耀鸿,男,1993年生,硕士生
Alloy (Zn/Er ratio)ZnErMg
Mg-5Zn-0.83Er (6)5.310.71Bal.
Mg-5Zn-1.25Er (4)5.311.19Bal.
Mg-5Zn-2.5Er (2)5.322.36Bal.
Mg-5Zn-5Er (1)5.455.31Bal.
表1  Mg-5Zn-xEr合金的成分
图1  热裂敏感性影响系数示意图
图2  热裂敏感性实验装置示意图
图3  Mg-5Zn-xEr合金的固相体积分数(fs)与凝固温度(T)关系曲线
AlloyFitting function expressionR2

Mg-5Zn-0.83Er

Mg-5Zn-1.25Er

Mg-5Zn-2.5Er

Mg-5Zn-5Er

fs(T)=0.98886-3.854×10-12exp (0.042T)

fs(T)=0.971-3.09×10-9exp (0.031T)

fs(T)=0.9779-5.687×10-16exp (0.056T)

fs(T)=1.00089-9.178×10-10exp (0.033T)

0.987

0.969

0.991

0.978

表2  Mg-5Zn-xEr合金的fs-T拟合函数表达式及其相关系数(R2)
图4  Mg-5Zn-xEr合金热裂敏感性预测
图5  Mg-5Zn-xEr合金热裂敏感性试样及评价结果(临界尺寸法实验)
图6  Mg-5Zn-xEr合金的XRD谱
图7  Mg-5Zn-xEr合金的SEM像及EDS谱
图8  Mg-5Zn-xEr合金的凝固曲线(临界尺寸法实验)
Alloyα-MgW-phaseI-phaseΔT
Mg-5Zn-0.83Er616.4-438.7177.7
Mg-5Zn-1.25Er613.7566.6425.1188.6
Mg-5Zn-2.5Er615.3544.9419.8195.5
Mg-5Zn-5Er593.4532.1-61.3
表3  Mg-5Zn-xEr合金的各相析出温度和凝固区间范围(临界尺寸法实验)
图9  Mg-5Zn-xEr合金热裂断口形貌(纵截面)
图10  Mg-5Zn-xEr合金热裂断口形貌(俯视图)
[1] Song J, Xiong S M. The correlation between as-cast and aged microstructures of high-vacuum die-cast Mg-9Al-1Zn magnesium alloy [J]. J. Alloys Compd., 2011, 509: 1866
[2] Wang B J, Xu D K, Wang S D, et al. Influence of solution treatment on the corrosion fatigue behavior of an as-forged Mg-Zn-Y-Zr alloy [J]. Int. J. Fatigue, 2019, 120: 46
[3] Pan F S, Yang M B, Chen X H. A review on casting magnesium alloys: Modification of commercial alloys and development of new alloys [J]. J. Mater. Sci. Technol., 2016, 32: 1211
[4] Nasr Esfahani M R, Niroumand B. Study of hot tearing of A206 aluminum alloy using instrumented constrained T-shaped casting method [J]. Mater. Charact., 2010, 61: 318
[5] Liu J W, Kou S D. Susceptibility of ternary aluminum alloys to cracking during solidification [J]. Acta Mater., 2017, 125: 513
[6] Wang Z, Li Y Z, Wang F, et al. Hot tearing susceptibility of Mg-xZn-2Y alloys [J]. Trans. Nonferrous Met. Soc. China, 2016, 26: 3115
[7] Shin J, Kim T, Kim D E, et al. Castability and mechanical properties of new 7xxx aluminum alloys for automotive chassis/body applications [J]. J. Alloys Compd., 2017, 698: 577
[8] Huang H, Fu P H, Wang Y X, et al. Effect of pouring and mold temperatures on hot tearing susceptibility of AZ91D and Mg-3Nd-0.2Zn-Zr Mg alloys [J]. Trans. Nonferrous Met. Soc. China, 2014, 24: 922
[9] Stangeland A, Mo A, M' Hamdi M, et al. Thermal strain in the mushy zone related to hot tearing [J]. Metall. Mater. Trans., 2006, 37A: 705
[10] Easton M A, Wang H, Grandfield J, et al. Observation and prediction of the hot tear susceptibility of ternary Al-Si-Mg alloys [J]. Metall. Mater. Trans., 2012, 43A: 3227
[11] Eskin D G, Suyitno, Katgerman L. Mechanical properties in the semi-solid state and hot tearing of aluminium alloys [J]. Prog. Mater. Sci., 2004, 49: 629
[12] Lahaie D J, Bouchard M. Physical modeling of the deformation mechanisms of semisolid bodies and a mechanical criterion for hot tearing [J]. Metall. Mater. Trans., 2001, 32B: 697
[13] Suyitno, Kool W H, Katgerman L. Hot tearing criteria evaluation for direct-chill casting of an Al-4.5 pct Cu alloy [J]. Metall. Mater. Trans., 2005, 36A: 1537
[14] Rappaz M, Drezet J M, Gremaud M. A new hot-tearing criterion [J]. Metall. Mater. Trans., 1999, 30A: 449
[15] Suyitno, Kool W H, Katgerman L. Integrated approach for prediction of hot tearing [J]. Metall. Mater. Trans., 2009, 40A: 2388
[16] Kou S D. A criterion for cracking during solidification [J]. Acta Mater., 2015, 88: 366
[17] Srinivasan A, Huang Y, Mendis C L, et al. Investigations on microstructures, mechanical and corrosion properties of Mg-Gd-Zn alloys [J]. Mater. Sci. Eng., 2014, A595: 224
[18] Luo Z P, Zhang S Q, Tang Y L, et al. Quasicrystals in as-cast Mg-Zn-RE alloys [J]. Scr. Metall. Mater., 1993, 28: 1513
[19] Bae D H, Kim S H, Kim D H, et al. Deformation behavior of Mg-Zn-Y alloys reinforced by icosahedral quasicrystalline particles [J]. Acta Mater., 2002, 50: 2343
[20] Luo Z P, Zhang S Q. Comment on the so-called Z-phase in magnesium alloys containing zinc and rare-earth elements [J]. J. Mater. Sci. Lett., 1993, 12: 1490
[21] Liu K, Wang Q F, Du W B, et al. Failure mechanism of as-cast Mg-6Zn-2Er alloy during tensile test at room temperature [J]. Trans. Nonferrous Met. Soc. China, 2013, 23: 3193
[22] Lee J Y, Kim D H, Lim H K, et al. Effects of Zn/Y ratio on microstructure and mechanical properties of Mg-Zn-Y alloys [J]. Mater. Lett., 2005, 59: 3801
[23] Li H, Du W B, Li S B, et al. Effect of Zn/Er weight ratio on phase formation and mechanical properties of as-cast Mg-Zn-Er alloys [J]. Mater. Des., 2012, 35: 259
[24] Li H, Du W B, Li J H, et al. Creep properties and controlled creep mechanism of as-cast Mg-5Zn-2.5Er alloy [J]. Trans. Nonferrous Met. Soc. China, 2010, 20: 1212
[25] Wei Z Q, Liu Z, Wang Z, et al. Effects of Y on hot tearing susceptibility of Mg-Zn-Y-Zr alloys [J]. Chin. J. Nonferrous Met., 2018, 28: 233
[25] 魏子淇, 刘 正, 王 志等. 钇对Mg-Zn-Y-Zr合金热裂敏感性影响 [J]. 中国有色金属学报, 2018, 28: 233
[26] Liu Z, Zhang S B, Mao P L, et al. Effects of Y on hot tearing formation mechanism of Mg-Zn-Y-Zr alloys [J]. Mater. Sci. Technol., 2014, 30: 1214
[27] Wang Z, Song J F, Huang Y D, et al. An investigation on hot tearing of Mg-4.5Zn-(0.5Zr) alloys with Y additions [J]. Metall. Mater. Trans., 2015, 46A: 2108
[28] Gunde P, Schiffl A, Uggowitzer P J. Influence of yttrium additions on the hot tearing susceptibility of magnesium-zinc alloys [J]. Mater. Sci. Eng., 2010, A527: 7074
[29] Xu R F. Study on hot tearing formation in hypoeutectic Al-Si alloys [D]. Jinan: Shandong University, 2014
[29] 许荣福. 亚共晶Al-Si合金热裂形成过程的研究 [D]. 济南: 山东大学, 2014
[30] Song J F, Pan F S, Jiang B, et al. A review on hot tearing of magnesium alloys [J]. J. Magn. Alloys, 2016, 4: 151
[31] Zhou Y, Mao P L, Wang Z, et al. Investigations on hot tearing behavior of Mg-7Zn-xCu-0.6Zr alloys [J]. Acta Metall. Sin., 2017, 53: 851
[31] 周 野, 毛萍莉, 王 志等. Mg-7Zn-xCu-0.6Zr合金热裂行为的研究 [J]. 金属学报, 2017, 53: 851
[32] Zhang S B. Investigations on testing methods and hot tearing susceptibility of Mg-Zn-Y alloys [D]. Shenyang: Shenyang University of Technology, 2014
[32] 张斯博. Mg-Zn-Y合金热裂行为测试研究 [D]. 沈阳: 沈阳工业大学, 2014
[33] Cao G, Kou S. Hot tearing of ternary Mg-Al-Ca alloy castings [J]. Metall. Mater. Trans., 2006, 37A: 3647
[34] Easton M A, Gibson M A, Zhu S M, et al. An a priori hot-tearing indicator applied to die-cast magnesium-rare earth alloys [J]. Metall. Mater. Trans., 2014, 45A: 3586
[35] Farup I, Mo A. Two-phase modeling of mushy zone parameters associated with hot tearing [J]. Metall. Mater. Trans., 2000, 31A: 1461
[36] Ludwig O, Drezet J M, Martin C L, et al. Rheological behavior of Al-Cu alloys during solidification: Constitutive modeling, experimental identification, and numerical study [J]. Metall. Mater. Trans., 2005, 36A: 1525
[37] Clyne T W, Davies G J. The influence of composition on solidification cracking susceptibility in binary alloys systems [J]. Br. Foundrymen, 1981, 74: 65
[38] Vernède S, Jarry P, Rappaz M. A granular model of equiaxed mushy zones: Formation of a coherent solid and localization of feeding [J]. Acta Mater., 2006, 54: 4023
[39] Vernède S, Dantzig J A, Rappaz M. A mesoscale granular model for the mechanical behavior of alloys during solidification [J]. Acta Mater., 2009, 57: 1554
[40] Li H. Research on composition range for icosahedral quasicrystalline phase and mechanical properties of as-cast Mg-Zn-Er alloys [D]. Beijing: Beijing University of Technology, 2011
[40] 李 晗. Mg-Zn-Er镁合金准晶相的形成规律及性能研究 [D]. 北京: 北京工业大学, 2011
[41] Li J H. Study on microstructure and mechanical properties of Mg-Zn-Er alloy reinforced by icosahedral quasicrystalline phase [D]. Beijing: Beijing University of Technology, 2010
[41] 李建辉. 准晶增强Mg-Zn-Er合金显微组织及性能的研究 [D]. 北京: 北京工业大学, 2010
[1] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[2] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[3] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[4] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[5] 李民, 王继杰, 李昊泽, 邢炜伟, 刘德壮, 李奥迪, 马颖澈. Y对无取向6.5%Si钢凝固组织、中温压缩变形和软化机制的影响[J]. 金属学报, 2023, 59(3): 399-412.
[6] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
[7] 王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.
[8] 娄峰, 刘轲, 刘金学, 董含武, 李淑波, 杜文博. 轧制态Mg-xZn-0.5Er合金板材组织及室温成形性能[J]. 金属学报, 2023, 59(11): 1439-1447.
[9] 李会朝, 王彩妹, 张华, 张建军, 何鹏, 邵明皓, 朱晓腾, 傅一钦. 搅拌摩擦增材制造技术研究进展[J]. 金属学报, 2023, 59(1): 106-124.
[10] 卢海飞, 吕继铭, 罗开玉, 鲁金忠. 激光热力交互增材制造Ti6Al4V合金的组织及力学性能[J]. 金属学报, 2023, 59(1): 125-135.
[11] 马志民, 邓运来, 刘佳, 刘胜胆, 刘洪雷. 淬火速率对7136铝合金应力腐蚀开裂敏感性的影响[J]. 金属学报, 2022, 58(9): 1118-1128.
[12] 高栋, 周宇, 于泽, 桑宝光. 液氮温度下纯Ti动态塑性变形中的孪晶变体选择[J]. 金属学报, 2022, 58(9): 1141-1149.
[13] 沈岗, 张文泰, 周超, 纪焕中, 罗恩, 张海军, 万国江. 热挤压Zn-2Cu-0.5Zr合金的力学性能与降解行为[J]. 金属学报, 2022, 58(6): 781-791.
[14] 余春, 徐济进, 魏啸, 陆皓. 核级镍基合金焊接材料失塑裂纹研究现状[J]. 金属学报, 2022, 58(4): 529-540.
[15] 徐流杰, 宗乐, 罗春阳, 焦照临, 魏世忠. 难熔高熵合金的强韧化途径与调控机理[J]. 金属学报, 2022, 58(3): 257-271.