Please wait a minute...
金属学报  2018, Vol. 54 Issue (11): 1597-1617    DOI: 10.11900/0412.1961.2018.00392
  材料与工艺 本期目录 | 过刊浏览 |
镁合金搅拌摩擦焊接的研究现状与展望
马宗义1(), 商乔1,2, 倪丁瑞1, 肖伯律1
1 中国科学院金属研究所 沈阳 110016
2 中国科学技术大学材料科学与工程学院 沈阳 110016
Friction Stir Welding of Magnesium Alloys: A Review
Zongyi MA1(), Qiao SHANG1,2, Dingrui NI1, Bolv XIAO1
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
全文: PDF(10201 KB)   HTML
摘要: 

近年来,镁合金在汽车、轨道交通、航空航天等领域的应用需求快速增长,其可靠连接的重要性愈发突出。作为固相焊接技术,搅拌摩擦焊(FSW)对镁合金焊接具有独特优势,因此得到了广泛关注。本文重点综述了镁合金常规对接FSW的研究进展,就焊接工艺、微观组织演化、织构分布特征、接头力学性能及其之间的相互作用机制进行了详细分析与评述。研究表明,不同于铝合金,在变形镁合金FSW时,织构是影响接头性能的关键因素,焊后形成的特殊强织构分布是导致接头难以达到与母材同等强度的主要原因。同时,对其它焊接形式如搭接焊、点焊、双面焊的可焊性及接头性能的影响因素与变化规律进行了讨论,并对镁合金与其它镁合金、铝合金以及钢之间异种焊的可焊性、界面结合机制、接头性能的影响因素及调控方法进行了评述。最后,对镁合金FSW的未来研究方向进行了展望。

关键词 镁合金搅拌摩擦焊接异种焊组织演化接头性能    
Abstract

In recent years, the increasing application demand for Mg alloys in automobile, rail transport, aviation and aerospace industries brings about the growing prominence of seeking reliable techniques to join Mg alloys. As a solid state welding method, friction stir welding (FSW) exhibits unique advantages in joining Mg alloys, and thus arouses widespread research interest. This paper emphatically reviewed the research status of conventional friction stir butt-welding of Mg alloys, and highlighted the welding process, microstructure evolution, texture characteristics, mechanical behavior and their interaction mechanisms. It was indicated that the texture plays a vital role in FSW joint performance of wrought Mg alloys, which is quite different from that in the FSW Al alloy joints. The specific strong texture formed in the weld is the main factor that gives rise to the impediment to achieving equal-strength joints to base materials. At the same time, some focuses like the weldability and the factors that influence joint performance in other types of FSW like lap welding, spot welding and double-sided welding; the weldability, interface bonding mechanism, joint performance and its affecting factors and optimization methods in dissimilar FSW between Mg alloys and other materials like Mg alloys of other grades, Al alloys and steels, were summarized and discussed. Finally, the future research and development directions in FSW of Mg alloys were prospected.

Key wordsMg alloy    friction stir welding    dissimilar welding    microstructure evolution    joint performance
收稿日期: 2018-08-20      出版日期: 2018-09-07
ZTFLH:  TG457  
基金资助:国家自然科学基金项目No.51331008
作者简介: 作者简介:马宗义,男,1963年生,研究员;商 乔(共同第一作者),男,1991年生,博士生

引用本文:

马宗义, 商乔, 倪丁瑞, 肖伯律. 镁合金搅拌摩擦焊接的研究现状与展望[J]. 金属学报, 2018, 54(11): 1597-1617.
Zongyi MA, Qiao SHANG, Dingrui NI, Bolv XIAO. Friction Stir Welding of Magnesium Alloys: A Review. Acta Metall Sin, 2018, 54(11): 1597-1617.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2018.00392      或      http://www.ams.org.cn/CN/Y2018/V54/I11/1597

图1  搅拌摩擦焊接示意图[2]
图2  挤压态AZ31镁合金搅拌摩擦焊接头宏观形貌[3]
图3  挤压态AZ31镁合金搅拌摩擦焊接头微观组织[3]
图4  AZ31镁合金搅拌摩擦焊接头搅拌区的织构分布[29]
图5  工具运动导致剪切层形成示意图[30]
图6  挤压态AZ31镁合金搅拌摩擦焊接头近焊核边界处热机影响区的织构梯度变化[3]
No. BM Thickness of BM / mm YS/UTS of BM MPa YS/UTS of joint
MPa
Joint efficiency
%
Ref.
1 Hot-rolled AZ31 2 155/255 80~105/160~190 63~75 [8]
2 Extruded AZ31 6.4 92~158/243 70~96/211~224 87~92 [3]
3 AZ31B-H24 2 215/290 130~180/210~240 72~82 [25]
4 AZ31B-O 6.5 150/230 -/180 78 [26]
5 Hot-rolled AZ31 6 62~135/302~334 (true stress) 70~88/262~267
(true stress)
78~88 [36]
6 Hot-rolled AZ31 6.3 153/250 105/203~215 81~86 [50]
7 AZ31-H24 4 281/321 100~114/185~211 58~66 [51]
8 AZ31 9 122/284 82~105/185~232 65~82 [52]
9 AZ31 2 and 3.2 -/250~270 -/185~230 69~92 [53]
10 AZ31 4 -/275 -/190~255 69~93 [54]
11 AZ31B-H24 4.95 208/309 100~130/170~200 55~65 [42]
12 AZ31B-H24 2 -/286 150~180/200~220 69~78 [55]
13 AZ31-H24 3.175 228/308 95~115/200~226 66~75 [56]
14 Extruded AZ31B 4 -/305 -/175~293 57~96 [57]
15 Hot-rolled AZ31 2 153/250 92~117/216~238 86~95 [58]
16 AZ61 6.3 170/300 110/280 93 [66]
17 Extruded AZ61A 6 217/271 110~177/138~224 51~83 [67]
18 AZ61 2.5 -/320 -/300 94 [68]
19 Extruded AZ61 5 202/289 169~181/229~296 79~100 [69]
20 Extruded AZ80 6 179/330 159~167/274~305 83~92 [16]
21 Extruded AZ80 6.3 246/356 165~230/234~312 65~87 [70]
22 Extruded ZK60 8 165/290 125/250 86 [22]
23 Forged Mg-Zn-Y-Zr 6 120/275 110/260 94 [23]
24 Hot-extruded Mg-5Al-3Sn 2.8 217/297 123~166/245~259 82~87 [71]
25 Hot-extruded Mg-5Al-1Sn 3 -/285 -/223~258 78~91 [72]
26 Hot-rolled ZM21 5, 10 and 25 120/227 102~106/173~198 76~87 [73]
27 Rolled NZ20K 2 -/210 -/191 91 [74]
表1  变形镁合金FSW接头拉伸性能汇总[3,8,16,22,23,25,26,36,42,50~58,66~74]
图7  AZ31镁合金搅拌摩擦焊接头在拉伸变形后期的表面宏观形貌与拉伸孪晶分布区域的对比[29]
图8  AZ31镁合金搅拌摩擦焊接头在拉伸变形后期搅拌区内不同位置的显微织构(母晶取向组分+孪晶取向组分)[29]
图9  不同应力水平下AZ31镁合金搅拌摩擦焊接头表面的局部拉伸应变分布[29]
图10  AZ31镁合金搅拌摩擦焊接头拉伸后期在焊核中部生成的{1011}-{1012}二次孪晶[3]
图11  带Zn夹层AZ31镁合金搅拌摩擦点焊接头界面处形成的α-Mg+MgZn共晶组织及多种Mg-Zn金属间化合物[105]
图12  挤压态AZ31镁合金双面一体式(bobbin-tool)搅拌摩擦焊接头宏观形貌
图13  AZ31镁合金与钢板(热浸镀上含Al的Zn层)搭接焊界面的TEM像及EDS结果[140]
[1] Thomas W M, Nicholas E D, Needham J C, et al.Friction stir butt welding [P]. UK Pat, 9125978.8, 1991
[2] Mishra R S, Ma Z Y.Friction stir welding and processing[J]. Mater. Sci. Eng., 2005, R50: 1
[3] Shang Q, Ni D R, Xue P, et al.Evolution of local texture and its effect on mechanical properties and fracture behavior of friction stir welded joint of extruded Mg-3Al-1Zn alloy[J]. Mater. Charact., 2017, 128: 14
[4] Zhang H, Lin S B, Wu L, et al.The microstructures evolution mechanism of friction stir welded AZ31 magnesium alloy[J]. Rare Met. Mater. Eng., 2005, 34: 1021(张华, 林三宝, 吴林等. AZ31镁合金搅拌摩擦焊接显微组织形成机制[J]. 稀有金属材料与工程, 2005, 34: 1021)
[5] Suhuddin U F H R, Mironov S, Sato Y S, et al. Grain structure evolution during friction-stir welding of AZ31 magnesium alloy[J]. Acta Mater., 2009, 57: 5406
[6] Mironov S, Onuma T, Sato Y S, et al.Microstructure evolution during friction-stir welding of AZ31 magnesium alloy[J]. Acta Mater., 2015, 100: 301
[7] Chang C I, Lee C J, Huang J C.Relationship between grain size and Zener-Holloman parameter during friction stir processing in AZ31 Mg alloys[J]. Scr. Mater., 2004, 51: 509
[8] Commin L, Dumont M, Masse J E, et al.Friction stir welding of AZ31 magnesium alloy rolled sheets: Influence of processing parameters[J]. Acta Mater., 2009, 57: 326
[9] Chang C I, Du X H, Huang J C.Achieving ultrafine grain size in Mg-Al-Zn alloy by friction stir processing[J]. Scr. Mater., 2007, 57: 209
[10] Watanabe H, Tsutsui H, Mukai T, et al.Grain size control of commercial wrought Mg-Al-Zn alloys utilizing dynamic recrystallization[J]. Mater. Trans., 2001, 42: 1200
[11] Tang W, Guo X, McClure J C, et al. Heat input and temperature distribution in friction stir welding[J]. J. Mater. Process. Manuf. Sci., 1998, 7: 163
[12] Hwang Y M, Kang Z W, Chiou Y C, et al.Experimental study on temperature distributions within the workpiece during friction stir welding of aluminum alloys[J]. Int. J. Mach. Tools Manuf., 2008, 48: 778
[13] Albakri A N, Mansoor B, Nassar H, et al.Thermo-mechanical and metallurgical aspects in friction stir processing of AZ31 Mg alloy—A numerical and experimental investigation[J]. J. Mater. Process. Technol., 2013, 213: 279
[14] Tripathi A, Tewari A, Srinivasan N, et al.Microstructural origin of friction stir processed zone in a magnesium alloy[J]. Metall. Mater. Trans., 2015, 46A: 3333
[15] Yang B C, Yan J H, Sutton M A, et al.Banded microstructure in AA2024-T351 and AA2524-T351 aluminum friction stir welds: Part I. Metallurgical studies[J]. Mater. Sci. Eng., 2004, A364: 55
[16] Yang J, Ni D R, Wang D, et al.Friction stir welding of as-extruded Mg-Al-Zn alloy with higher Al content. Part I: Formation of banded and line structures[J]. Mater. Charact., 2014, 96: 142
[17] Mironov S, Motohashi Y, Ito T, et al.Feasibility of friction stir welding for joining and microstructure refinement in a ZK60 magnesium alloy[J]. Mater. Trans., 2007, 48: 3140
[18] Mironov S, Motohashi Y, Kaibyshev R.Grain growth behaviors in a friction-stir-welded ZK60 magnesium alloy[J]. Mater. Trans., 2007, 48: 1387
[19] Tayon W A, Domack M S, Hoffman E K, et al.Texture evolution within the thermomechanically affected zone of an Al-Li alloy 2195 friction stir weld[J]. Metall. Mater. Trans., 2013, 44A: 4906
[20] Feng A H, Xiao B L, Ma Z Y, et al.Effect of friction stir processing procedures on microstructure and mechanical properties of Mg-Al-Zn casting[J]. Metall. Mater. Trans., 2009, 40A: 2447
[21] Xie G M, Ma Z Y, Geng L.Effect of Y Addition on microstructure and mechanical properties of friction stir welded ZK60 alloy[J]. J. Mater. Sci. Technol., 2009, 25: 351
[22] Xie G M, Ma Z Y, Geng L.Effect of microstructural evolution on mechanical properties of friction stir welded ZK60 alloy[J]. Mater. Sci. Eng., 2008, A486: 49
[23] Xie G M, Ma Z Y, Geng L, et al.Microstructural evolution and mechanical properties of friction stir welded Mg-Zn-Y-Zr alloy[J]. Mater. Sci. Eng., 2007, A471: 63
[24] Ma Z Y, Pilchak A L, Juhas M C, et al.Microstructural refinement and property enhancement of cast light alloys via friction stir processing[J]. Scr. Mater., 2008, 58: 361
[25] Chowdhury S H, Chen D L, Bhole S D, et al.Friction stir welded AZ31 magnesium alloy: Microstructure, texture, and tensile properties[J]. Metall. Mater. Trans., 2013, 44A: 323
[26] Woo W, Choo H, Brown D W, et al.Texture variation and its influence on the tensile behavior of a friction-stir processed magnesium alloy[J]. Scr. Mater., 2006, 54: 1859
[27] Yu Z Z, Choo H, Feng Z L, et al.Influence of thermo-mechanical parameters on texture and tensile behavior of friction stir processed Mg alloy[J]. Scr. Mater., 2010, 63: 1112
[28] Park S H C, Sato Y S, Kokawa H. Basal plane texture and flow pattern in friction stir weld of a magnesium alloy[J]. Metall. Mater. Trans., 2003, 34A: 987
[29] Shang Q, Ni D R, Xue P, et al.Improving joint performance of friction stir welded wrought Mg alloy by controlling non-uniform deformation behavior[J]. Mater. Sci. Eng., 2017, A707: 426
[30] Yang J, Ni D R, Xiao B L, et al.Non-uniform deformation in a friction stir welded Mg-Al-Zn joint during stress fatigue[J]. Int. J. Fatigue, 2014, 59: 9
[31] Schneider J A, Nunes A C Jr. Characterization of plastic flow and resulting microtextures in a friction stir weld[J]. Metall. Mater. Trans., 2004, 35B: 777
[32] Fonda R, Reynolds A, Feng C R, et al.Material flow in friction stir welds[J]. Metall. Mater. Trans., 2012, 44A: 337
[33] Farzadfar S A, Sanjari M, Jung I H, et al.Role of yttrium in the microstructure and texture evolution of Mg[J]. Mater. Sci. Eng., 2011, A528: 6742
[34] Mironov S, Yang Q, Takahashi H, et al.Specific character of material flow in near-surface layer during friction stir processing of AZ31 magnesium alloy[J]. Metall. Mater. Trans., 2010, 41A: 1016
[35] Hiscocks J, Diak B J, Gerlich A P, et al.Formation mechanisms of periodic longitudinal microstructure and texture patterns in friction stir welded magnesium AZ80[J]. Mater. Charact., 2016, 122: 22
[36] Xin R L, Liu D J, Li B, et al.Mechanisms of fracture and inhomogeneous deformation on transverse tensile test of friction-stir-processed AZ31 Mg alloy[J]. Mater. Sci. Eng., 2013, A565: 333
[37] Kim M S, Jung J Y, Song Y M, et al.Simulation of microtexture developments in the stir zone of friction stir-welded AZ31 Mg alloys[J]. Int. J. Plast., 2017, 94: 24
[38] Pan W X, Li D S, Tartakovsky A M, et al.A new smoothed particle hydrodynamics non-Newtonian model for friction stir welding: Process modeling and simulation of microstructure evolution in a magnesium alloy[J]. Int. J. Plast., 2013, 48: 189
[39] Wang Y N, Chang C I, Lee C J, et al.Texture and weak grain size dependence in friction stir processed Mg-Al-Zn alloy[J]. Scr. Mater., 2006, 55: 637
[40] Yuan W, Panigrahi S K, Su J Q, et al.Influence of grain size and texture on Hall-Petch relationship for a magnesium alloy[J]. Scr. Mater., 2011, 65: 994
[41] Yu H H, Xin Y C, Wang M Y, et al.Hall-Petch relationship in Mg alloys: A review[J]. J. Mater. Sci. Technol., 2018, 34: 248
[42] Afrin N, Chen D L, Cao X, et al.Microstructure and tensile properties of friction stir welded AZ31B magnesium alloy[J]. Mater. Sci. Eng., 2008, A472: 179
[43] Xin R L, Li B, Liao A L, et al.Correlation between texture variation and transverse tensile behavior of friction-stir-processed AZ31 Mg alloy[J]. Metall. Mater. Trans., 2012, 43A: 2500
[44] Peng J H, Zhang Z, Liu Z, et al.The effect of texture and grain size on improving the mechanical properties of Mg-Al-Zn alloys by friction stir processing[J]. Sci. Rep., 2018, 8: 4196
[45] Zhang D T, Suzuki M, Maruyama K.Microstructural evolution of a heat-resistant magnesium alloy due to friction stir welding[J]. Scr. Mater., 2005, 52: 899
[46] Yu L N, Nakata K, Liao J S.Microstructures and mechanical properties in friction stir zone of thixo-molded AS41 Mg alloy[J]. Mater. Trans., 2009, 50: 2378
[47] Yu L N, Nakata K, Liao J S.Microstructural modification and mechanical property improvement in friction stir zone of thixo-molded AE42 Mg alloy[J]. J. Alloys Compd., 2009, 480: 340
[48] Padmanaban G, Balasubramanian V.Selection of FSW tool pin profile, shoulder diameter and material for joining AZ31B magnesium alloy—An experimental approach[J]. Mater. Des., 2009, 30: 2647
[49] Chowdhury S M, Chen D L, Bhole S D, et al.Tensile properties of a friction stir welded magnesium alloy: Effect of pin tool thread orientation and weld pitch[J]. Mater. Sci. Eng., 2010, A527: 6064
[50] Yang J, Xiao B L, Wang D, et al.Effects of heat input on tensile properties and fracture behavior of friction stir welded Mg-3Al-1Zn alloy[J]. Mater. Sci. Eng., 2010, A527: 708
[51] Lim S, Kim S, Lee C G, et al.Tensile behavior of friction-stir-welded AZ31-H24 Mg alloy[J]. Metall. Mater. Trans., 2005, 36A: 1609
[52] Gharacheh M A, Kokabi A H, Daneshi G H, et al.The influence of the ratio of "rotational speed/traverse speed" (ω/ν) on mechanical properties of AZ31 friction stir welds[J]. Int. J. Mach. Tools Manuf., 2006, 46: 1983
[53] Bruni C, Forcellese A, Gabrielli F, et al.Effect of the ω/ν ratio and sheet thickness on mechanical properties of magnesium alloy FSWed joints[J]. Int. J. Mater. Form., 2010, 3(Suppl.1): 1007
[54] Wang X H, Wang K S.Microstructure and properties of friction stir butt-welded AZ31 magnesium alloy[J]. Mater. Sci. Eng., 2006, A431: 114
[55] Cao X, Jahazi M.Effect of welding speed on the quality of friction stir welded butt joints of a magnesium alloy[J]. Mater. Des., 2009, 30: 2033
[56] Pareek M, Polar A, Rumiche F, et al.Metallurgical evaluation of AZ31B-H24 magnesium alloy friction stir welds[J]. J. Mater. Eng. Perform., 2007, 16: 655
[57] Fu R D, Ji H S, Li Y J, et al.Effect of weld conditions on microstructures and mechanical properties of friction stir welded joints on AZ31B magnesium alloys[J]. Sci. Technol. Weld. Joining, 2012, 17: 174
[58] Forcellese A, Martarelli M, Simoncini M.Effect of process parameters on vertical forces and temperatures developed during friction stir welding of magnesium alloys[J]. Int. J. Adv. Manuf. Technol., 2016, 85: 595
[59] Yang J, Wang D, Xiao B L, et al.Effects of rotation rates on microstructure, mechanical properties, and fracture behavior of friction stir-welded (FSW) AZ31 magnesium alloy[J]. Metall. Mater. Trans., 2013, 44A: 517
[60] Ma Z Y, Feng A H, Chen D L, et al.Recent advances in friction stir welding/processing of aluminum alloys: Microstructural evolution and mechanical properties[J]. Crit. Rev. Solid State Mater. Sci., 2017, 43: 269
[61] Xin R L, Liu D J, Shu X G, et al.Influence of welding parameter on texture distribution and plastic deformation behavior of as-rolled AZ31 Mg alloys[J]. J. Alloys Compd., 2016, 670: 64
[62] Kouadri-Henni A, Barrallier L.Mechanical properties, microstructure and crystallographic texture of magnesium AZ91-D alloy welded by friction stir welding (FSW)[J]. Metall. Mater. Trans., 2014, 45A: 4983
[63] Xiao B L, Yang Q, Yang J, et al.Enhanced mechanical properties of Mg-Gd-Y-Zr casting via friction stir processing[J]. J. Alloys Compd., 2011, 509: 2879
[64] Ni D R, Chen D L, Yang J, et al.Low cycle fatigue properties of friction stir welded joints of a semi-solid processed AZ91D magnesium alloy[J]. Mater. Des., 2014, 56: 1
[65] Liu D J.Local texture, mechanical properties and fracture mechanisms of friction stir welded magnesium alloys [D]. Chongqing: Chongqing University, 2014(刘德佳. 搅拌摩擦焊接镁合金微区织构、力学性能与断裂机制 [D]. 重庆: 重庆大学, 2014)
[66] Park S H C, Sato Y S, Kokawa H. Effect of micro-texture on fracture location in friction stir weld of Mg alloy AZ61 during tensile test[J]. Scr. Mater., 2003, 49: 161
[67] Rose A R, Manisekar K, Balasubramanian V.Effect of axial force on microstructure and tensile properties of friction stir welded AZ61A magnesium alloy[J]. Trans. Nonferrous Met. Soc. China, 2011, 21: 974
[68] Srinivasan P B, Zettler R, Blawert C, et al.A study on the effect of plasma electrolytic oxidation on the stress corrosion cracking behaviour of a wrought AZ61 magnesium alloy and its friction stir weldment[J]. Mater. Charact., 2009, 60: 389
[69] Sun S J, Kim J S, Lee W G, et al.Influence of friction stir welding on mechanical properties of butt joints of AZ61 magnesium alloy[J]. Adv. Mater. Sci. Eng., 2017, 2017: 7381403
[70] Hiscocks J, Diak B J, Gerlich A P, et al.Influence of magnesium AZ80 friction stir weld texture on tensile strain localisation[J]. Mater. Sci. Technol., 2016, 33: 189
[71] Pan F S, Xu A L, Deng D A, et al.Effects of friction stir welding on microstructure and mechanical properties of magnesium alloy Mg-5Al-3Sn[J]. Mater. Des., 2016, 110: 266
[72] Pan F S, Xu A L, Ye J H, et al.Effects of rotation rate on microstructure and mechanical properties of friction stir-welded Mg-5Al-1Sn magnesium alloy[J]. Int. J. Adv. Manuf. Technol., 2016, 91: 389
[73] Harikrishna K L, Dilip J J S, Choudary K R, et al. Friction stir welding of magnesium alloy ZM21[J]. Trans. Indian Inst. Met., 2010, 63: 807
[74] Zhao Y, Wang Q Z, He X D, et al.Microstructure and mechanical properties of friction stir-welded Mg-2Nd-0.3Zn-0.4Zr magnesium alloy[J]. J. Mater. Eng. Perform., 2014, 23: 4136
[75] Liu D J, Xin R L, Xiao Y, et al.Strain localization in friction stir welded magnesium alloy during tension and compression deformation[J]. Mater. Sci. Eng., 2014, A609: 88
[76] Mironov S, Onuma T, Sato Y S, et al.Tensile behavior of friction-stir welded AZ31 magnesium alloy[J]. Mater. Sci. Eng., 2017, A679: 272
[77] Liu D J, Xin R L, Li Z Y, et al.The activation of twinning and texture evolution during bending of friction stir welded magnesium alloys[J]. Mater. Sci. Eng., 2015, A646: 145
[78] Mironov S, Onuma T, Sato Y S, et al.Microstructural changes during tension of friction-stir welded AZ31 magnesium alloy[J]. Mater. Charact., 2017, 130: 1
[79] He W J, Luan B F, Xin R L, et al.A multi-scale model for description of strain localization in friction stir welded magnesium alloy[J]. Comp. Mater. Sci., 2015, 104: 162
[80] Liu G, Xin R, Li J, et al.Fracture localisation in retreating side of friction stir welded magnesium alloy[J]. Sci. Technol. Weld. Joining, 2015, 20: 378
[81] Barnett M R.Twinning and the ductility of magnesium alloys Part II. "Contraction" twins[J]. Mater. Sci. Eng., 2007, A464: 8
[82] Cizek P, Barnett M R.Characteristics of the contraction twins formed close to the fracture surface in Mg-3Al-1Zn alloy deformed in tension[J]. Scr. Mater., 2008, 59: 959
[83] Yang J, Ni D R, Wang D, et al.Strain-controlled low-cycle fatigue behavior of friction stir-welded AZ31 magnesium alloy[J]. Metall. Mater. Trans., 2014, 45A: 2101
[84] Zhou L, Li Z Y, Nakata K, et al.Microstructure and fatigue behavior of friction stir-welded noncombustive Mg-9Al-Zn-Ca magnesium alloy[J]. J. Mater. Eng. Perform., 2016, 25: 2403
[85] Xu N, Song Q N, Fujii H, et al.Mechanical properties' modification of large load friction stir welded AZ31B Mg alloy joint[J]. Mater. Lett., 2018, 219: 93
[86] Lee C J, Huang J C, Du X H.Improvement of yield stress of friction-stirred Mg-Al-Zn alloys by subsequent compression[J]. Scr. Mater., 2007, 56: 875
[87] Xin R L, Liu D J, Xu Z R, et al.Changes in texture and microstructure of friction stir welded Mg alloy during post-rolling and their effects on mechanical properties[J]. Mater. Sci. Eng., 2013, A582: 178
[88] Xin R L, Sun L Y, Liu D J, et al.Effect of subsequent tension and annealing on microstructure evolution and strength enhancement of friction stir welded Mg alloys[J]. Mater. Sci. Eng., 2014, A602: 1
[89] Liu Z, Xin R L, Li D R, et al.Comparative study on twinning characteristics during two post-weld compression paths and their effects on joint enhancement[J]. Sci. Rep., 2016, 6: 39779
[90] Yuan W, Carlson B, Verma R, et al.Study of top sheet thinning during friction stir lap welding of AZ31 magnesium alloy[J]. Sci. Technol. Weld. Joining, 2013, 17: 375
[91] Cao X, Jahazi M.Effect of tool rotational speed and probe length on lap joint quality of a friction stir welded magnesium alloy[J]. Mater. Des., 2011, 32: 1
[92] Yang Q, Li X, Chen K, et al.Effect of tool geometry and process condition on static strength of a magnesium friction stir lap linear weld[J]. Mater. Sci. Eng., 2011, A528: 2463
[93] Moraes J F C, Rodriguez R I, Jordon J B, et al. Effect of overlap orientation on fatigue behavior in friction stir linear welds of magnesium alloy sheets[J]. Int. J. Fatigue, 2017, 100: 1
[94] Naik B S, Chen D L, Cao X, et al.Microstructure and fatigue properties of a friction stir lap welded magnesium alloy[J]. Metall. Mater. Trans., 2013, 44A: 3732
[95] Naik B S, Chen D L, Cao X, et al.Texture development in a friction stir lap-welded AZ31B magnesium alloy[J]. Metall. Mater. Trans., 2014, 45A: 4333
[96] Naik B S, Cao X J, Wanjara P, et al.Residual stresses and tensile properties of friction stir welded AZ31B-H24 magnesium alloy in lap configuration[J]. Metall. Mater. Trans., 2015, 46B: 1626
[97] Horie S, Shinozaki K, Yamamoto M, et al.Experimental investigation of material flow during friction stir spot welding[J]. Sci. Technol. Weld. Joining, 2010, 15: 666
[98] Yuan W, Mishra R S, Carlson B, et al.Material flow and microstructural evolution during friction stir spot welding of AZ31 magnesium alloy[J]. Mater. Sci. Eng., 2012, A543: 200
[99] Solanki K N, Jordon J B, Whittington W, et al.Structure-property relationships and residual stress quantification of a friction stir spot welded magnesium alloy[J]. Scr. Mater., 2012, 66: 797
[100] Sun N, North T H, Chen D R, et al.Influences of welding parameters on mechanical properties of AZ31 friction stir spot welds[J]. Sci. Technol. Weld. Joining, 2013, 17: 304
[101] Lin Y C, Liu J J, Lin B Y, et al.Effects of process parameters on strength of Mg alloy AZ61 friction stir spot welds[J]. Mater. Des., 2012, 35: 350
[102] Yin Y H, Sun N, North T H, et al.Hook formation and mechanical properties in AZ31 friction stir spot welds[J]. J. Mater. Process. Technol., 2010, 210: 2062
[103] Yin Y H, Sun N, North T H, et al.Influence of tool design on mechanical properties of AZ31 friction stir spot welds[J]. Sci. Technol. Weld. Joining, 2013, 15: 81
[104] Shen J, Wang D, Liu K.Effects of pin diameter on microstructures and mechanical properties of friction stir spot welded AZ31B magnesium alloy joints[J]. Sci. Technol. Weld. Joining, 2013, 17: 357
[105] Xu R Z, Ni D R, Yang Q, et al.Influence of Zn interlayer addition on microstructure and mechanical properties of friction stir welded AZ31 Mg alloy[J]. J. Mater. Sci., 2015, 50: 4160
[106] Xu R Z, Ni D R, Yang Q, et al.Influencing mechanism of Zn interlayer addition on hook defects of friction stir spot welded Mg-Al-Zn alloy joints[J]. Mater. Des., 2015, 69: 163
[107] Xu R Z, Ni D R, Yang Q, et al.Pinless friction stir spot welding of Mg-3Al-1Zn alloy with Zn interlayer[J]. J. Mater. Sci. Technol., 2016, 32: 76
[108] Su P, Gerlich A, Yamamoto M, et al.Formation and retention of local melted films in AZ91 friction stir spot welds[J]. J. Mater. Sci., 2007, 42: 9954
[109] Yamamoto M, Gerlich A, North T H, et al.Cracking in the stir zones of Mg-alloy friction stir spot welds[J]. J. Mater. Sci., 2007, 42: 7657
[110] Yamamoto M, Gerlich A, North T H, et al.Mechanism of cracking in AZ91 friction stir spot welds[J]. Sci. Technol. Weld. Joining, 2007, 12: 208
[111] Li W Y, Fu T, Hütsch L, et al.Effects of tool rotational and welding speed on microstructure and mechanical properties of bobbin-tool friction-stir welded Mg AZ31[J]. Mater. Des., 2014, 64: 714
[112] Chen J, Fujii H, Sun Y F, et al.Fine grained Mg-3Al-1Zn alloy with randomized texture in the double-sided friction stir welded joints[J]. Mater. Sci. Eng., 2013, A580: 83
[113] Chen J, Ueji R, Fujii H.Double-sided friction-stir welding of magnesium alloy with concave-convex tools for texture control[J]. Mater. Des., 2015, 76: 181
[114] Liu D, Nishio H, Nakata K.Anisotropic property of material arrangement in friction stir welding of dissimilar Mg alloys[J]. Mater. Des., 2011, 32: 4818
[115] Luo C, Li X, Song D, et al.Microstructure evolution and mechanical properties of friction stir welded dissimilar joints of Mg-Zn-Gd and Mg-Al-Zn alloys[J]. Mater. Sci. Eng., 2016, A664: 103
[116] Liu D J, Xin R L, Zheng X, et al.Microstructure and mechanical properties of friction stir welded dissimilar Mg alloys of ZK60-AZ31[J]. Mater. Sci. Eng., 2013, A561: 419
[117] Okamoto H.Desk Handbook—Phase Diagrams for Binary Alloys[M]. Ohio: ASM International, 2000: 36
[118] Shah L H, Othman N H, Gerlich A.Review of research progress on aluminium-magnesium dissimilar friction stir welding[J]. Sci. Technol. Weld. Joining, 2018, 23: 256
[119] Mofid M A, Abdollah-Zadeh A, Ghaini F M.The effect of water cooling during dissimilar friction stir welding of Al alloy to Mg alloy[J]. Mater. Des., 2012, 36: 161
[120] Mofid M A, Abdollah-Zadeh A, Ghaini F M, et al.Submerged friction-stir welding (SFSW) underwater and under liquid nitrogen: An improved method to join Al alloys to Mg alloys[J]. Metall. Mater. Trans., 2012, 43A: 5106
[121] Ji S D, Huang R F, Meng X C, et al.Enhancing friction stir weldability of 6061-T6 Al and AZ31B Mg alloys assisted by external non-rotational shoulder[J]. J. Mater. Eng. Perform., 2017, 26: 2359
[122] Liu Z L, Ji S D, Meng X C, et al.Improving joint formation and tensile properties of friction stir welded ultra-thin Al/Mg alloy sheets using a pinless tool assisted by a stationary shoulder[J]. Int. J. Adv. Manuf. Technol., 2017, 93: 2071
[123] Xu R Z, Ni D R, Yang Q, et al.Influence of Zn coating on friction stir spot welded magnesium-aluminium joint[J]. Sci. Technol. Weld. Joining, 2017, 22: 512
[124] Wang Y, Al-Zubaidy B, Prangnell P B.The effectiveness of Al-Si coatings for preventing interfacial reaction in Al-Mg dissimilar metal welding[J]. Metall. Mater. Trans., 2018, 49A: 162
[125] Gao Y, Morisada Y, Fujii H, et al.Dissimilar friction stir lap welding of magnesium to aluminum using plasma electrolytic oxidation interlayer[J]. Mater. Sci. Eng., 2018, A711: 109
[126] Rai R, De A, Bhadeshia H K D H, et al. Review: Friction stir welding tools[J]. Sci. Technol. Weld. Joining, 2013, 16: 325
[127] Yamamoto N, Liao J S, Watanabe S, et al.Effect of intermetallic compound layer on tensile strength of dissimilar friction-stir weld of a high strength Mg alloy and Al alloy[J]. Mater. Trans., 2009, 50: 2833
[128] Azizieh M, Alavijeh A S, Abbasi M, et al.Mechanical properties and microstructural evaluation of AA1100 to AZ31 dissimilar friction stir welds[J]. Mater. Chem. Phys., 2016, 170: 251
[129] Fu B L, Qin G L, Li F, et al.Friction stir welding process of dissimilar metals of 6061-T6 aluminum alloy to AZ31B magnesium alloy[J]. J. Mater. Process. Technol., 2015, 218: 38
[130] Ji S D, Meng X C, Liu Z L, et al.Dissimilar friction stir welding of 6061 aluminum alloy and AZ31 magnesium alloy assisted with ultrasonic[J]. Mater. Lett., 2017, 201: 173
[131] Liu Z L, Meng X C, Ji S D, et al.Improving tensile properties of Al/Mg joint by smashing intermetallic compounds via ultrasonic-assisted stationary shoulder friction stir welding[J]. J. Manuf. Process., 2018, 31: 552
[132] Lv X Q, Wu C S, Yang C L, et al.Weld microstructure and mechanical properties in ultrasonic enhanced friction stir welding of Al alloy to Mg alloy[J]. J. Mater. Process. Technol., 2018, 254: 145
[133] Jana S, Hovanski Y, Grant G J.Friction stir lap welding of magnesium alloy to steel: A preliminary investigation[J]. Metall. Mater. Trans., 2010, 41A: 3173
[134] Schneider C, Weinberger T, Inoue J, et al.Characterisation of interface of steel/magnesium FSW[J]. Sci. Technol. Weld. Joining, 2011, 16: 100
[135] Chen Y C, Nakata K.Effect of surface states of steel on microstructure and mechanical properties of lap joints of magnesium alloy and steel by friction stir welding[J]. Sci. Technol. Weld. Joining, 2010, 15: 293
[136] Wei Y N, Li J L, Xiong J T, et al.Microstructures and mechanical properties of magnesium alloy and stainless steel weld-joint made by friction stir lap welding[J]. Mater. Des., 2012, 33: 111
[137] Wang X J, Li W H, Zhao G.Connection mechanism research on friction stir spot welding without keyhole between magnesium and steel dissimilar alloys[J]. Mater. Res. Innovations, 2014, 18(Suppl.2): 1063
[138] Chen Y, Chen J, Amirkhiz B S, et al.Microstructures and properties of Mg alloy/DP600 steel dissimilar refill friction stir spot welds[J]. Sci. Technol. Weld. Joining, 2015, 20: 494
[139] Zhang Z K, Wang X J, Wang P C, et al.Friction stir keyholeless spot welding of AZ31 Mg alloy-mild steel[J]. Trans. Nonferrous Met. Soc. China, 2014, 24: 1709
[140] Xu R Z, Ni D R, Yang Q, et al.Influencing mechanism of Al-containing Zn coating on interfacial microstructure and mechanical properties of friction stir spot welded Mg-steel joint[J]. Mater. Charact., 2018, 140: 197
[1] 邓丽萍,崔凯旋,汪炳叔,向红亮,李强. AZ31镁合金室温多道次压缩过程微观组织和织构演变的研究[J]. 金属学报, 2019, 55(8): 976-986.
[2] 王晨, 王贝贝, 薛鹏, 王东, 倪丁瑞, 陈礼清, 肖伯律, 马宗义. SiCp/6092Al复合材料搅拌摩擦焊接头的疲劳行为研究[J]. 金属学报, 2019, 55(1): 149-159.
[3] 曾荣昌, 崔蓝月, 柯伟. 医用镁合金:成分、组织及腐蚀[J]. 金属学报, 2018, 54(9): 1215-1235.
[4] 刘金辉, 宋影伟, 单大勇, 韩恩厚. 铸态和锻造态Mg-5Y-7Gd-1Nd-0.5Zr合金腐蚀行为对比研究[J]. 金属学报, 2018, 54(8): 1141-1149.
[5] 刘晏宇, 毛萍莉, 刘正, 王峰, 王志. Schmid因子的理论计算及其在镁合金高速变形过程中的应用[J]. 金属学报, 2018, 54(6): 950-958.
[6] 吴国华, 陈玉狮, 丁文江. 高性能镁合金凝固组织控制研究现状与展望[J]. 金属学报, 2018, 54(5): 637-646.
[7] 李旭东, 毛萍莉, 刘晏宇, 刘正, 王志, 王峰. 高应变速率下Mg-3Zn-1Y镁合金的各向异性及变形机制[J]. 金属学报, 2018, 54(4): 557-565.
[8] 武传松, 宿浩, 石磊. 搅拌摩擦焊接产热传热过程与材料流动的数值模拟[J]. 金属学报, 2018, 54(2): 265-277.
[9] 熊守美, 杜经莲, 郭志鹏, 杨满红, 吴孟武, 毕成, 曹永友. 镁合金压铸过程界面传热行为及凝固组织结构的表征与模拟研究[J]. 金属学报, 2018, 54(2): 174-192.
[10] 谢广明, 马宗义, 薛鹏, 骆宗安, 王国栋. 工具转速对搅拌摩擦加工Mg-Zn-Y-Zr耐热镁合金超塑性行为的影响[J]. 金属学报, 2018, 54(12): 1745-1755.
[11] 陈树君, 王宣, 袁涛, 李晓旭. 镁合金焊缝液化裂纹敏感性及预测方法探究[J]. 金属学报, 2018, 54(12): 1735-1744.
[12] 韩林原, 李旋, 储成林, 白晶, 薛烽. 流场环境中AZ31镁合金的腐蚀行为研究[J]. 金属学报, 2017, 53(10): 1347-1356.
[13] 郑玉峰, 杨宏韬. 血管支架用可降解金属研究进展[J]. 金属学报, 2017, 53(10): 1227-1237.
[14] 张小农, 左敏超, 张绍翔, 吴宏流, 王文辉, 陈文智, 倪嘉桦. 医用可降解血管支架临床研究进展[J]. 金属学报, 2017, 53(10): 1215-1226.
[15] 袁广银, 牛佳林. 可降解医用镁合金在骨修复应用中的研究进展[J]. 金属学报, 2017, 53(10): 1168-1180.