Please wait a minute...
金属学报  2018, Vol. 54 Issue (11): 1597-1617    DOI: 10.11900/0412.1961.2018.00392
  材料与工艺 本期目录 | 过刊浏览 |
镁合金搅拌摩擦焊接的研究现状与展望
马宗义1(), 商乔1,2, 倪丁瑞1, 肖伯律1
1 中国科学院金属研究所 沈阳 110016
2 中国科学技术大学材料科学与工程学院 沈阳 110016
Friction Stir Welding of Magnesium Alloys: A Review
Zongyi MA1(), Qiao SHANG1,2, Dingrui NI1, Bolv XIAO1
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
全文: PDF(10201 KB)   HTML
摘要: 

近年来,镁合金在汽车、轨道交通、航空航天等领域的应用需求快速增长,其可靠连接的重要性愈发突出。作为固相焊接技术,搅拌摩擦焊(FSW)对镁合金焊接具有独特优势,因此得到了广泛关注。本文重点综述了镁合金常规对接FSW的研究进展,就焊接工艺、微观组织演化、织构分布特征、接头力学性能及其之间的相互作用机制进行了详细分析与评述。研究表明,不同于铝合金,在变形镁合金FSW时,织构是影响接头性能的关键因素,焊后形成的特殊强织构分布是导致接头难以达到与母材同等强度的主要原因。同时,对其它焊接形式如搭接焊、点焊、双面焊的可焊性及接头性能的影响因素与变化规律进行了讨论,并对镁合金与其它镁合金、铝合金以及钢之间异种焊的可焊性、界面结合机制、接头性能的影响因素及调控方法进行了评述。最后,对镁合金FSW的未来研究方向进行了展望。

关键词 镁合金搅拌摩擦焊接异种焊组织演化接头性能    
Abstract

In recent years, the increasing application demand for Mg alloys in automobile, rail transport, aviation and aerospace industries brings about the growing prominence of seeking reliable techniques to join Mg alloys. As a solid state welding method, friction stir welding (FSW) exhibits unique advantages in joining Mg alloys, and thus arouses widespread research interest. This paper emphatically reviewed the research status of conventional friction stir butt-welding of Mg alloys, and highlighted the welding process, microstructure evolution, texture characteristics, mechanical behavior and their interaction mechanisms. It was indicated that the texture plays a vital role in FSW joint performance of wrought Mg alloys, which is quite different from that in the FSW Al alloy joints. The specific strong texture formed in the weld is the main factor that gives rise to the impediment to achieving equal-strength joints to base materials. At the same time, some focuses like the weldability and the factors that influence joint performance in other types of FSW like lap welding, spot welding and double-sided welding; the weldability, interface bonding mechanism, joint performance and its affecting factors and optimization methods in dissimilar FSW between Mg alloys and other materials like Mg alloys of other grades, Al alloys and steels, were summarized and discussed. Finally, the future research and development directions in FSW of Mg alloys were prospected.

Key wordsMg alloy    friction stir welding    dissimilar welding    microstructure evolution    joint performance
收稿日期: 2018-08-20      出版日期: 2018-09-07
ZTFLH:  TG457  
基金资助:国家自然科学基金项目No.51331008
作者简介: 作者简介:马宗义,男,1963年生,研究员;商 乔(共同第一作者),男,1991年生,博士生

引用本文:

马宗义, 商乔, 倪丁瑞, 肖伯律. 镁合金搅拌摩擦焊接的研究现状与展望[J]. 金属学报, 2018, 54(11): 1597-1617.
Zongyi MA, Qiao SHANG, Dingrui NI, Bolv XIAO. Friction Stir Welding of Magnesium Alloys: A Review. Acta Metall, 2018, 54(11): 1597-1617.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2018.00392      或      http://www.ams.org.cn/CN/Y2018/V54/I11/1597

图1  搅拌摩擦焊接示意图[2]
图2  挤压态AZ31镁合金搅拌摩擦焊接头宏观形貌[3]
图3  挤压态AZ31镁合金搅拌摩擦焊接头微观组织[3]
图4  AZ31镁合金搅拌摩擦焊接头搅拌区的织构分布[29]
图5  工具运动导致剪切层形成示意图[30]
图6  挤压态AZ31镁合金搅拌摩擦焊接头近焊核边界处热机影响区的织构梯度变化[3]
No. BM Thickness of BM / mm YS/UTS of BM MPa YS/UTS of joint
MPa
Joint efficiency
%
Ref.
1 Hot-rolled AZ31 2 155/255 80~105/160~190 63~75 [8]
2 Extruded AZ31 6.4 92~158/243 70~96/211~224 87~92 [3]
3 AZ31B-H24 2 215/290 130~180/210~240 72~82 [25]
4 AZ31B-O 6.5 150/230 -/180 78 [26]
5 Hot-rolled AZ31 6 62~135/302~334 (true stress) 70~88/262~267
(true stress)
78~88 [36]
6 Hot-rolled AZ31 6.3 153/250 105/203~215 81~86 [50]
7 AZ31-H24 4 281/321 100~114/185~211 58~66 [51]
8 AZ31 9 122/284 82~105/185~232 65~82 [52]
9 AZ31 2 and 3.2 -/250~270 -/185~230 69~92 [53]
10 AZ31 4 -/275 -/190~255 69~93 [54]
11 AZ31B-H24 4.95 208/309 100~130/170~200 55~65 [42]
12 AZ31B-H24 2 -/286 150~180/200~220 69~78 [55]
13 AZ31-H24 3.175 228/308 95~115/200~226 66~75 [56]
14 Extruded AZ31B 4 -/305 -/175~293 57~96 [57]
15 Hot-rolled AZ31 2 153/250 92~117/216~238 86~95 [58]
16 AZ61 6.3 170/300 110/280 93 [66]
17 Extruded AZ61A 6 217/271 110~177/138~224 51~83 [67]
18 AZ61 2.5 -/320 -/300 94 [68]
19 Extruded AZ61 5 202/289 169~181/229~296 79~100 [69]
20 Extruded AZ80 6 179/330 159~167/274~305 83~92 [16]
21 Extruded AZ80 6.3 246/356 165~230/234~312 65~87 [70]
22 Extruded ZK60 8 165/290 125/250 86 [22]
23 Forged Mg-Zn-Y-Zr 6 120/275 110/260 94 [23]
24 Hot-extruded Mg-5Al-3Sn 2.8 217/297 123~166/245~259 82~87 [71]
25 Hot-extruded Mg-5Al-1Sn 3 -/285 -/223~258 78~91 [72]
26 Hot-rolled ZM21 5, 10 and 25 120/227 102~106/173~198 76~87 [73]
27 Rolled NZ20K 2 -/210 -/191 91 [74]
表1  变形镁合金FSW接头拉伸性能汇总[3,8,16,22,23,25,26,36,42,50~58,66~74]
图7  AZ31镁合金搅拌摩擦焊接头在拉伸变形后期的表面宏观形貌与拉伸孪晶分布区域的对比[29]
图8  AZ31镁合金搅拌摩擦焊接头在拉伸变形后期搅拌区内不同位置的显微织构(母晶取向组分+孪晶取向组分)[29]
图9  不同应力水平下AZ31镁合金搅拌摩擦焊接头表面的局部拉伸应变分布[29]
图10  AZ31镁合金搅拌摩擦焊接头拉伸后期在焊核中部生成的{1011}-{1012}二次孪晶[3]
图11  带Zn夹层AZ31镁合金搅拌摩擦点焊接头界面处形成的α-Mg+MgZn共晶组织及多种Mg-Zn金属间化合物[105]
图12  挤压态AZ31镁合金双面一体式(bobbin-tool)搅拌摩擦焊接头宏观形貌
图13  AZ31镁合金与钢板(热浸镀上含Al的Zn层)搭接焊界面的TEM像及EDS结果[140]
[1] Thomas W M, Nicholas E D, Needham J C, et al.Friction stir butt welding [P]. UK Pat, 9125978.8, 1991
[2] Mishra R S, Ma Z Y.Friction stir welding and processing[J]. Mater. Sci. Eng., 2005, R50: 1
[3] Shang Q, Ni D R, Xue P, et al.Evolution of local texture and its effect on mechanical properties and fracture behavior of friction stir welded joint of extruded Mg-3Al-1Zn alloy[J]. Mater. Charact., 2017, 128: 14
doi: 10.1016/j.matchar.2017.03.018
[4] Zhang H, Lin S B, Wu L, et al.The microstructures evolution mechanism of friction stir welded AZ31 magnesium alloy[J]. Rare Met. Mater. Eng., 2005, 34: 1021(张华, 林三宝, 吴林等. AZ31镁合金搅拌摩擦焊接显微组织形成机制[J]. 稀有金属材料与工程, 2005, 34: 1021)
[5] Suhuddin U F H R, Mironov S, Sato Y S, et al. Grain structure evolution during friction-stir welding of AZ31 magnesium alloy[J]. Acta Mater., 2009, 57: 5406
doi: 10.1016/j.actamat.2009.07.041
[6] Mironov S, Onuma T, Sato Y S, et al.Microstructure evolution during friction-stir welding of AZ31 magnesium alloy[J]. Acta Mater., 2015, 100: 301
doi: 10.1016/j.actamat.2015.08.066
[7] Chang C I, Lee C J, Huang J C.Relationship between grain size and Zener-Holloman parameter during friction stir processing in AZ31 Mg alloys[J]. Scr. Mater., 2004, 51: 509
doi: 10.1016/j.scriptamat.2004.05.043
[8] Commin L, Dumont M, Masse J E, et al.Friction stir welding of AZ31 magnesium alloy rolled sheets: Influence of processing parameters[J]. Acta Mater., 2009, 57: 326
doi: 10.1016/j.actamat.2008.09.011
[9] Chang C I, Du X H, Huang J C.Achieving ultrafine grain size in Mg-Al-Zn alloy by friction stir processing[J]. Scr. Mater., 2007, 57: 209
doi: 10.1016/j.scriptamat.2007.04.007
[10] Watanabe H, Tsutsui H, Mukai T, et al.Grain size control of commercial wrought Mg-Al-Zn alloys utilizing dynamic recrystallization[J]. Mater. Trans., 2001, 42: 1200
doi: 10.2320/matertrans.42.1200
[11] Tang W, Guo X, McClure J C, et al. Heat input and temperature distribution in friction stir welding[J]. J. Mater. Process. Manuf. Sci., 1998, 7: 163
doi: 10.1106/55TF-PF2G-JBH2-1Q2B
[12] Hwang Y M, Kang Z W, Chiou Y C, et al.Experimental study on temperature distributions within the workpiece during friction stir welding of aluminum alloys[J]. Int. J. Mach. Tools Manuf., 2008, 48: 778
doi: 10.1016/j.ijmachtools.2007.12.003
[13] Albakri A N, Mansoor B, Nassar H, et al.Thermo-mechanical and metallurgical aspects in friction stir processing of AZ31 Mg alloy—A numerical and experimental investigation[J]. J. Mater. Process. Technol., 2013, 213: 279
doi: 10.1016/j.jmatprotec.2012.09.015
[14] Tripathi A, Tewari A, Srinivasan N, et al.Microstructural origin of friction stir processed zone in a magnesium alloy[J]. Metall. Mater. Trans., 2015, 46A: 3333
doi: 10.1007/s11661-015-2972-7
[15] Yang B C, Yan J H, Sutton M A, et al.Banded microstructure in AA2024-T351 and AA2524-T351 aluminum friction stir welds: Part I. Metallurgical studies[J]. Mater. Sci. Eng., 2004, A364: 55
doi: 10.1016/S0921-5093(03)00532-X
[16] Yang J, Ni D R, Wang D, et al.Friction stir welding of as-extruded Mg-Al-Zn alloy with higher Al content. Part I: Formation of banded and line structures[J]. Mater. Charact., 2014, 96: 142
doi: 10.1016/j.matchar.2014.08.002
[17] Mironov S, Motohashi Y, Ito T, et al.Feasibility of friction stir welding for joining and microstructure refinement in a ZK60 magnesium alloy[J]. Mater. Trans., 2007, 48: 3140
doi: 10.2320/matertrans.MRA2007177
[18] Mironov S, Motohashi Y, Kaibyshev R.Grain growth behaviors in a friction-stir-welded ZK60 magnesium alloy[J]. Mater. Trans., 2007, 48: 1387
doi: 10.2320/matertrans.MRA2007040
[19] Tayon W A, Domack M S, Hoffman E K, et al.Texture evolution within the thermomechanically affected zone of an Al-Li alloy 2195 friction stir weld[J]. Metall. Mater. Trans., 2013, 44A: 4906
doi: 10.1007/s11661-013-1802-z
[20] Feng A H, Xiao B L, Ma Z Y, et al.Effect of friction stir processing procedures on microstructure and mechanical properties of Mg-Al-Zn casting[J]. Metall. Mater. Trans., 2009, 40A: 2447
doi: 10.1007/s11661-009-9923-0
[21] Xie G M, Ma Z Y, Geng L.Effect of Y Addition on microstructure and mechanical properties of friction stir welded ZK60 alloy[J]. J. Mater. Sci. Technol., 2009, 25: 351
doi: 10.1179/174328407X243032
[22] Xie G M, Ma Z Y, Geng L.Effect of microstructural evolution on mechanical properties of friction stir welded ZK60 alloy[J]. Mater. Sci. Eng., 2008, A486: 49
[23] Xie G M, Ma Z Y, Geng L, et al.Microstructural evolution and mechanical properties of friction stir welded Mg-Zn-Y-Zr alloy[J]. Mater. Sci. Eng., 2007, A471: 63
doi: 10.1016/j.msea.2007.03.041
[24] Ma Z Y, Pilchak A L, Juhas M C, et al.Microstructural refinement and property enhancement of cast light alloys via friction stir processing[J]. Scr. Mater., 2008, 58: 361
doi: 10.1016/j.scriptamat.2007.09.062
[25] Chowdhury S H, Chen D L, Bhole S D, et al.Friction stir welded AZ31 magnesium alloy: Microstructure, texture, and tensile properties[J]. Metall. Mater. Trans., 2013, 44A: 323
doi: 10.1007/s11661-012-1382-3
[26] Woo W, Choo H, Brown D W, et al.Texture variation and its influence on the tensile behavior of a friction-stir processed magnesium alloy[J]. Scr. Mater., 2006, 54: 1859
doi: 10.1016/j.scriptamat.2006.02.019
[27] Yu Z Z, Choo H, Feng Z L, et al.Influence of thermo-mechanical parameters on texture and tensile behavior of friction stir processed Mg alloy[J]. Scr. Mater., 2010, 63: 1112
doi: 10.1016/j.scriptamat.2010.08.016
[28] Park S H C, Sato Y S, Kokawa H. Basal plane texture and flow pattern in friction stir weld of a magnesium alloy[J]. Metall. Mater. Trans., 2003, 34A: 987
doi: 10.1007/s11661-003-0228-4
[29] Shang Q, Ni D R, Xue P, et al.Improving joint performance of friction stir welded wrought Mg alloy by controlling non-uniform deformation behavior[J]. Mater. Sci. Eng., 2017, A707: 426
[30] Yang J, Ni D R, Xiao B L, et al.Non-uniform deformation in a friction stir welded Mg-Al-Zn joint during stress fatigue[J]. Int. J. Fatigue, 2014, 59: 9
doi: 10.1016/j.ijfatigue.2013.10.004
[31] Schneider J A, Nunes A C Jr. Characterization of plastic flow and resulting microtextures in a friction stir weld[J]. Metall. Mater. Trans., 2004, 35B: 777
doi: 10.1007/s11663-004-0018-4
[32] Fonda R, Reynolds A, Feng C R, et al.Material flow in friction stir welds[J]. Metall. Mater. Trans., 2012, 44A: 337
[33] Farzadfar S A, Sanjari M, Jung I H, et al.Role of yttrium in the microstructure and texture evolution of Mg[J]. Mater. Sci. Eng., 2011, A528: 6742
doi: 10.1016/j.msea.2011.05.064
[34] Mironov S, Yang Q, Takahashi H, et al.Specific character of material flow in near-surface layer during friction stir processing of AZ31 magnesium alloy[J]. Metall. Mater. Trans., 2010, 41A: 1016
doi: 10.1007/s11661-009-0158-x
[35] Hiscocks J, Diak B J, Gerlich A P, et al.Formation mechanisms of periodic longitudinal microstructure and texture patterns in friction stir welded magnesium AZ80[J]. Mater. Charact., 2016, 122: 22
doi: 10.1016/j.matchar.2016.10.004
[36] Xin R L, Liu D J, Li B, et al.Mechanisms of fracture and inhomogeneous deformation on transverse tensile test of friction-stir-processed AZ31 Mg alloy[J]. Mater. Sci. Eng., 2013, A565: 333
doi: 10.1016/j.msea.2012.12.053
[37] Kim M S, Jung J Y, Song Y M, et al.Simulation of microtexture developments in the stir zone of friction stir-welded AZ31 Mg alloys[J]. Int. J. Plast., 2017, 94: 24
doi: 10.1016/j.ijplas.2017.02.013
[38] Pan W X, Li D S, Tartakovsky A M, et al.A new smoothed particle hydrodynamics non-Newtonian model for friction stir welding: Process modeling and simulation of microstructure evolution in a magnesium alloy[J]. Int. J. Plast., 2013, 48: 189
doi: 10.1016/j.ijplas.2013.02.013
[39] Wang Y N, Chang C I, Lee C J, et al.Texture and weak grain size dependence in friction stir processed Mg-Al-Zn alloy[J]. Scr. Mater., 2006, 55: 637
doi: 10.1016/j.scriptamat.2006.06.005
[40] Yuan W, Panigrahi S K, Su J Q, et al.Influence of grain size and texture on Hall-Petch relationship for a magnesium alloy[J]. Scr. Mater., 2011, 65: 994
doi: 10.1016/j.scriptamat.2011.08.028
[41] Yu H H, Xin Y C, Wang M Y, et al.Hall-Petch relationship in Mg alloys: A review[J]. J. Mater. Sci. Technol., 2018, 34: 248
doi: 10.1016/j.jmst.2017.07.022
[42] Afrin N, Chen D L, Cao X, et al.Microstructure and tensile properties of friction stir welded AZ31B magnesium alloy[J]. Mater. Sci. Eng., 2008, A472: 179
doi: 10.1016/j.msea.2007.03.018
[43] Xin R L, Li B, Liao A L, et al.Correlation between texture variation and transverse tensile behavior of friction-stir-processed AZ31 Mg alloy[J]. Metall. Mater. Trans., 2012, 43A: 2500
doi: 10.1007/s11661-012-1080-1
[44] Peng J H, Zhang Z, Liu Z, et al.The effect of texture and grain size on improving the mechanical properties of Mg-Al-Zn alloys by friction stir processing[J]. Sci. Rep., 2018, 8: 4196
doi: 10.1038/s41598-018-22344-3
[45] Zhang D T, Suzuki M, Maruyama K.Microstructural evolution of a heat-resistant magnesium alloy due to friction stir welding[J]. Scr. Mater., 2005, 52: 899
doi: 10.1016/j.scriptamat.2005.01.003
[46] Yu L N, Nakata K, Liao J S.Microstructures and mechanical properties in friction stir zone of thixo-molded AS41 Mg alloy[J]. Mater. Trans., 2009, 50: 2378
doi: 10.2320/matertrans.M2009122
[47] Yu L N, Nakata K, Liao J S.Microstructural modification and mechanical property improvement in friction stir zone of thixo-molded AE42 Mg alloy[J]. J. Alloys Compd., 2009, 480: 340
doi: 10.1016/j.jallcom.2009.02.015
[48] Padmanaban G, Balasubramanian V.Selection of FSW tool pin profile, shoulder diameter and material for joining AZ31B magnesium alloy—An experimental approach[J]. Mater. Des., 2009, 30: 2647
doi: 10.1016/j.matdes.2008.10.021
[49] Chowdhury S M, Chen D L, Bhole S D, et al.Tensile properties of a friction stir welded magnesium alloy: Effect of pin tool thread orientation and weld pitch[J]. Mater. Sci. Eng., 2010, A527: 6064
doi: 10.1016/j.msea.2010.06.012
[50] Yang J, Xiao B L, Wang D, et al.Effects of heat input on tensile properties and fracture behavior of friction stir welded Mg-3Al-1Zn alloy[J]. Mater. Sci. Eng., 2010, A527: 708
doi: 10.1016/j.msea.2009.09.044
[51] Lim S, Kim S, Lee C G, et al.Tensile behavior of friction-stir-welded AZ31-H24 Mg alloy[J]. Metall. Mater. Trans., 2005, 36A: 1609
doi: 10.1007/s11661-005-0252-7
[52] Gharacheh M A, Kokabi A H, Daneshi G H, et al.The influence of the ratio of "rotational speed/traverse speed" (ω/ν) on mechanical properties of AZ31 friction stir welds[J]. Int. J. Mach. Tools Manuf., 2006, 46: 1983
doi: 10.1016/j.ijmachtools.2006.01.007
[53] Bruni C, Forcellese A, Gabrielli F, et al.Effect of the ω/ν ratio and sheet thickness on mechanical properties of magnesium alloy FSWed joints[J]. Int. J. Mater. Form., 2010, 3(Suppl.1): 1007
doi: 10.1007/s12289-010-0940-8
[54] Wang X H, Wang K S.Microstructure and properties of friction stir butt-welded AZ31 magnesium alloy[J]. Mater. Sci. Eng., 2006, A431: 114
doi: 10.1016/j.msea.2006.05.128
[55] Cao X, Jahazi M.Effect of welding speed on the quality of friction stir welded butt joints of a magnesium alloy[J]. Mater. Des., 2009, 30: 2033
doi: 10.1016/j.matdes.2008.08.040
[56] Pareek M, Polar A, Rumiche F, et al.Metallurgical evaluation of AZ31B-H24 magnesium alloy friction stir welds[J]. J. Mater. Eng. Perform., 2007, 16: 655
doi: 10.1007/s11665-007-9084-5
[57] Fu R D, Ji H S, Li Y J, et al.Effect of weld conditions on microstructures and mechanical properties of friction stir welded joints on AZ31B magnesium alloys[J]. Sci. Technol. Weld. Joining, 2012, 17: 174
doi: 10.1179/1362171811Y.0000000056
[58] Forcellese A, Martarelli M, Simoncini M.Effect of process parameters on vertical forces and temperatures developed during friction stir welding of magnesium alloys[J]. Int. J. Adv. Manuf. Technol., 2016, 85: 595
doi: 10.1007/s00170-015-7957-6
[59] Yang J, Wang D, Xiao B L, et al.Effects of rotation rates on microstructure, mechanical properties, and fracture behavior of friction stir-welded (FSW) AZ31 magnesium alloy[J]. Metall. Mater. Trans., 2013, 44A: 517
doi: 10.1007/s11661-012-1373-4
[60] Ma Z Y, Feng A H, Chen D L, et al.Recent advances in friction stir welding/processing of aluminum alloys: Microstructural evolution and mechanical properties[J]. Crit. Rev. Solid State Mater. Sci., 2017, 43: 269
doi: 10.1080/10408436.2017.1358145
[61] Xin R L, Liu D J, Shu X G, et al.Influence of welding parameter on texture distribution and plastic deformation behavior of as-rolled AZ31 Mg alloys[J]. J. Alloys Compd., 2016, 670: 64
doi: 10.1016/j.jallcom.2016.02.023
[62] Kouadri-Henni A, Barrallier L.Mechanical properties, microstructure and crystallographic texture of magnesium AZ91-D alloy welded by friction stir welding (FSW)[J]. Metall. Mater. Trans., 2014, 45A: 4983
doi: 10.1007/s11661-014-2381-3
[63] Xiao B L, Yang Q, Yang J, et al.Enhanced mechanical properties of Mg-Gd-Y-Zr casting via friction stir processing[J]. J. Alloys Compd., 2011, 509: 2879
doi: 10.1016/j.jallcom.2010.11.147
[64] Ni D R, Chen D L, Yang J, et al.Low cycle fatigue properties of friction stir welded joints of a semi-solid processed AZ91D magnesium alloy[J]. Mater. Des., 2014, 56: 1
doi: 10.1016/j.matdes.2013.10.081
[65] Liu D J.Local texture, mechanical properties and fracture mechanisms of friction stir welded magnesium alloys [D]. Chongqing: Chongqing University, 2014(刘德佳. 搅拌摩擦焊接镁合金微区织构、力学性能与断裂机制 [D]. 重庆: 重庆大学, 2014)
[66] Park S H C, Sato Y S, Kokawa H. Effect of micro-texture on fracture location in friction stir weld of Mg alloy AZ61 during tensile test[J]. Scr. Mater., 2003, 49: 161
doi: 10.1016/S1359-6462(03)00210-0
[67] Rose A R, Manisekar K, Balasubramanian V.Effect of axial force on microstructure and tensile properties of friction stir welded AZ61A magnesium alloy[J]. Trans. Nonferrous Met. Soc. China, 2011, 21: 974
doi: 10.1016/S1003-6326(11)60809-1
[68] Srinivasan P B, Zettler R, Blawert C, et al.A study on the effect of plasma electrolytic oxidation on the stress corrosion cracking behaviour of a wrought AZ61 magnesium alloy and its friction stir weldment[J]. Mater. Charact., 2009, 60: 389
doi: 10.1016/j.matchar.2008.10.010
[69] Sun S J, Kim J S, Lee W G, et al.Influence of friction stir welding on mechanical properties of butt joints of AZ61 magnesium alloy[J]. Adv. Mater. Sci. Eng., 2017, 2017: 7381403
[70] Hiscocks J, Diak B J, Gerlich A P, et al.Influence of magnesium AZ80 friction stir weld texture on tensile strain localisation[J]. Mater. Sci. Technol., 2016, 33: 189
doi: 10.1080/02670836.2016.1173394
[71] Pan F S, Xu A L, Deng D A, et al.Effects of friction stir welding on microstructure and mechanical properties of magnesium alloy Mg-5Al-3Sn[J]. Mater. Des., 2016, 110: 266
doi: 10.1016/j.matdes.2016.07.146
[72] Pan F S, Xu A L, Ye J H, et al.Effects of rotation rate on microstructure and mechanical properties of friction stir-welded Mg-5Al-1Sn magnesium alloy[J]. Int. J. Adv. Manuf. Technol., 2016, 91: 389
doi: 10.1007/s00170-016-9752-4
[73] Harikrishna K L, Dilip J J S, Choudary K R, et al. Friction stir welding of magnesium alloy ZM21[J]. Trans. Indian Inst. Met., 2010, 63: 807
doi: 10.1007/s12666-010-0123-9
[74] Zhao Y, Wang Q Z, He X D, et al.Microstructure and mechanical properties of friction stir-welded Mg-2Nd-0.3Zn-0.4Zr magnesium alloy[J]. J. Mater. Eng. Perform., 2014, 23: 4136
doi: 10.1007/s11665-014-1173-7
[75] Liu D J, Xin R L, Xiao Y, et al.Strain localization in friction stir welded magnesium alloy during tension and compression deformation[J]. Mater. Sci. Eng., 2014, A609: 88
doi: 10.1016/j.msea.2014.04.089
[76] Mironov S, Onuma T, Sato Y S, et al.Tensile behavior of friction-stir welded AZ31 magnesium alloy[J]. Mater. Sci. Eng., 2017, A679: 272
doi: 10.1016/j.msea.2016.10.036
[77] Liu D J, Xin R L, Li Z Y, et al.The activation of twinning and texture evolution during bending of friction stir welded magnesium alloys[J]. Mater. Sci. Eng., 2015, A646: 145
doi: 10.1016/j.msea.2015.08.059
[78] Mironov S, Onuma T, Sato Y S, et al.Microstructural changes during tension of friction-stir welded AZ31 magnesium alloy[J]. Mater. Charact., 2017, 130: 1
doi: 10.1016/j.matchar.2017.05.016
[79] He W J, Luan B F, Xin R L, et al.A multi-scale model for description of strain localization in friction stir welded magnesium alloy[J]. Comp. Mater. Sci., 2015, 104: 162
doi: 10.1016/j.commatsci.2015.04.002
[80] Liu G, Xin R, Li J, et al.Fracture localisation in retreating side of friction stir welded magnesium alloy[J]. Sci. Technol. Weld. Joining, 2015, 20: 378
doi: 10.1179/1362171815Y.0000000027
[81] Barnett M R.Twinning and the ductility of magnesium alloys Part II. "Contraction" twins[J]. Mater. Sci. Eng., 2007, A464: 8
doi: 10.1016/j.msea.2007.02.109
[82] Cizek P, Barnett M R.Characteristics of the contraction twins formed close to the fracture surface in Mg-3Al-1Zn alloy deformed in tension[J]. Scr. Mater., 2008, 59: 959
doi: 10.1016/j.scriptamat.2008.06.041
[83] Yang J, Ni D R, Wang D, et al.Strain-controlled low-cycle fatigue behavior of friction stir-welded AZ31 magnesium alloy[J]. Metall. Mater. Trans., 2014, 45A: 2101
doi: 10.1007/s11661-013-2129-5
[84] Zhou L, Li Z Y, Nakata K, et al.Microstructure and fatigue behavior of friction stir-welded noncombustive Mg-9Al-Zn-Ca magnesium alloy[J]. J. Mater. Eng. Perform., 2016, 25: 2403
doi: 10.1007/s11665-016-2061-0
[85] Xu N, Song Q N, Fujii H, et al.Mechanical properties' modification of large load friction stir welded AZ31B Mg alloy joint[J]. Mater. Lett., 2018, 219: 93
doi: 10.1016/j.matlet.2018.02.099
[86] Lee C J, Huang J C, Du X H.Improvement of yield stress of friction-stirred Mg-Al-Zn alloys by subsequent compression[J]. Scr. Mater., 2007, 56: 875
doi: 10.1016/j.scriptamat.2007.01.041
[87] Xin R L, Liu D J, Xu Z R, et al.Changes in texture and microstructure of friction stir welded Mg alloy during post-rolling and their effects on mechanical properties[J]. Mater. Sci. Eng., 2013, A582: 178
doi: 10.1016/j.msea.2013.06.005
[88] Xin R L, Sun L Y, Liu D J, et al.Effect of subsequent tension and annealing on microstructure evolution and strength enhancement of friction stir welded Mg alloys[J]. Mater. Sci. Eng., 2014, A602: 1
doi: 10.1016/j.msea.2014.02.062
[89] Liu Z, Xin R L, Li D R, et al.Comparative study on twinning characteristics during two post-weld compression paths and their effects on joint enhancement[J]. Sci. Rep., 2016, 6: 39779
doi: 10.1038/srep39779 pmid: 28008982
[90] Yuan W, Carlson B, Verma R, et al.Study of top sheet thinning during friction stir lap welding of AZ31 magnesium alloy[J]. Sci. Technol. Weld. Joining, 2013, 17: 375
doi: 10.1179/1362171812Y.0000000018
[91] Cao X, Jahazi M.Effect of tool rotational speed and probe length on lap joint quality of a friction stir welded magnesium alloy[J]. Mater. Des., 2011, 32: 1
doi: 10.1016/j.matdes.2010.06.048
[92] Yang Q, Li X, Chen K, et al.Effect of tool geometry and process condition on static strength of a magnesium friction stir lap linear weld[J]. Mater. Sci. Eng., 2011, A528: 2463
[93] Moraes J F C, Rodriguez R I, Jordon J B, et al. Effect of overlap orientation on fatigue behavior in friction stir linear welds of magnesium alloy sheets[J]. Int. J. Fatigue, 2017, 100: 1
doi: 10.1016/j.ijfatigue.2017.02.018
[94] Naik B S, Chen D L, Cao X, et al.Microstructure and fatigue properties of a friction stir lap welded magnesium alloy[J]. Metall. Mater. Trans., 2013, 44A: 3732
doi: 10.1007/s11661-013-1728-5
[95] Naik B S, Chen D L, Cao X, et al.Texture development in a friction stir lap-welded AZ31B magnesium alloy[J]. Metall. Mater. Trans., 2014, 45A: 4333
doi: 10.1007/s11661-014-2372-4
[96] Naik B S, Cao X J, Wanjara P, et al.Residual stresses and tensile properties of friction stir welded AZ31B-H24 magnesium alloy in lap configuration[J]. Metall. Mater. Trans., 2015, 46B: 1626
doi: 10.1007/s11663-015-0338-6
[97] Horie S, Shinozaki K, Yamamoto M, et al.Experimental investigation of material flow during friction stir spot welding[J]. Sci. Technol. Weld. Joining, 2010, 15: 666
doi: 10.1179/136217110X12785889550145
[98] Yuan W, Mishra R S, Carlson B, et al.Material flow and microstructural evolution during friction stir spot welding of AZ31 magnesium alloy[J]. Mater. Sci. Eng., 2012, A543: 200
doi: 10.1016/j.msea.2012.02.075
[99] Solanki K N, Jordon J B, Whittington W, et al.Structure-property relationships and residual stress quantification of a friction stir spot welded magnesium alloy[J]. Scr. Mater., 2012, 66: 797
doi: 10.1016/j.scriptamat.2012.02.011
[100] Sun N, North T H, Chen D R, et al.Influences of welding parameters on mechanical properties of AZ31 friction stir spot welds[J]. Sci. Technol. Weld. Joining, 2013, 17: 304
doi: 10.1179/1362171812Y.0000000008
[101] Lin Y C, Liu J J, Lin B Y, et al.Effects of process parameters on strength of Mg alloy AZ61 friction stir spot welds[J]. Mater. Des., 2012, 35: 350
doi: 10.1016/j.matdes.2011.08.050
[102] Yin Y H, Sun N, North T H, et al.Hook formation and mechanical properties in AZ31 friction stir spot welds[J]. J. Mater. Process. Technol., 2010, 210: 2062
doi: 10.1016/j.jmatprotec.2010.07.029
[103] Yin Y H, Sun N, North T H, et al.Influence of tool design on mechanical properties of AZ31 friction stir spot welds[J]. Sci. Technol. Weld. Joining, 2013, 15: 81
doi: 10.1179/136217109X12489665059384
[104] Shen J, Wang D, Liu K.Effects of pin diameter on microstructures and mechanical properties of friction stir spot welded AZ31B magnesium alloy joints[J]. Sci. Technol. Weld. Joining, 2013, 17: 357
doi: 10.1179/136217112X13333824902125
[105] Xu R Z, Ni D R, Yang Q, et al.Influence of Zn interlayer addition on microstructure and mechanical properties of friction stir welded AZ31 Mg alloy[J]. J. Mater. Sci., 2015, 50: 4160
doi: 10.1007/s10853-015-8841-3
[106] Xu R Z, Ni D R, Yang Q, et al.Influencing mechanism of Zn interlayer addition on hook defects of friction stir spot welded Mg-Al-Zn alloy joints[J]. Mater. Des., 2015, 69: 163
doi: 10.1016/j.matdes.2014.12.045
[107] Xu R Z, Ni D R, Yang Q, et al.Pinless friction stir spot welding of Mg-3Al-1Zn alloy with Zn interlayer[J]. J. Mater. Sci. Technol., 2016, 32: 76
doi: 10.1016/j.jmst.2015.08.012
[108] Su P, Gerlich A, Yamamoto M, et al.Formation and retention of local melted films in AZ91 friction stir spot welds[J]. J. Mater. Sci., 2007, 42: 9954
doi: 10.1007/s10853-007-2061-4
[109] Yamamoto M, Gerlich A, North T H, et al.Cracking in the stir zones of Mg-alloy friction stir spot welds[J]. J. Mater. Sci., 2007, 42: 7657
doi: 10.1007/s10853-007-1662-2
[110] Yamamoto M, Gerlich A, North T H, et al.Mechanism of cracking in AZ91 friction stir spot welds[J]. Sci. Technol. Weld. Joining, 2007, 12: 208
doi: 10.1179/174329307X177900
[111] Li W Y, Fu T, Hütsch L, et al.Effects of tool rotational and welding speed on microstructure and mechanical properties of bobbin-tool friction-stir welded Mg AZ31[J]. Mater. Des., 2014, 64: 714
doi: 10.1016/j.matdes.2014.07.023
[112] Chen J, Fujii H, Sun Y F, et al.Fine grained Mg-3Al-1Zn alloy with randomized texture in the double-sided friction stir welded joints[J]. Mater. Sci. Eng., 2013, A580: 83
doi: 10.1016/j.msea.2013.05.044
[113] Chen J, Ueji R, Fujii H.Double-sided friction-stir welding of magnesium alloy with concave-convex tools for texture control[J]. Mater. Des., 2015, 76: 181
doi: 10.1016/j.matdes.2015.03.040
[114] Liu D, Nishio H, Nakata K.Anisotropic property of material arrangement in friction stir welding of dissimilar Mg alloys[J]. Mater. Des., 2011, 32: 4818
doi: 10.1016/j.matdes.2011.06.020
[115] Luo C, Li X, Song D, et al.Microstructure evolution and mechanical properties of friction stir welded dissimilar joints of Mg-Zn-Gd and Mg-Al-Zn alloys[J]. Mater. Sci. Eng., 2016, A664: 103
doi: 10.1016/j.msea.2016.03.117
[116] Liu D J, Xin R L, Zheng X, et al.Microstructure and mechanical properties of friction stir welded dissimilar Mg alloys of ZK60-AZ31[J]. Mater. Sci. Eng., 2013, A561: 419
doi: 10.1016/j.msea.2012.10.052
[117] Okamoto H.Desk Handbook—Phase Diagrams for Binary Alloys[M]. Ohio: ASM International, 2000: 36
[118] Shah L H, Othman N H, Gerlich A.Review of research progress on aluminium-magnesium dissimilar friction stir welding[J]. Sci. Technol. Weld. Joining, 2018, 23: 256
doi: 10.1080/13621718.2017.1370193
[119] Mofid M A, Abdollah-Zadeh A, Ghaini F M.The effect of water cooling during dissimilar friction stir welding of Al alloy to Mg alloy[J]. Mater. Des., 2012, 36: 161
doi: 10.1016/j.matdes.2011.11.004
[120] Mofid M A, Abdollah-Zadeh A, Ghaini F M, et al.Submerged friction-stir welding (SFSW) underwater and under liquid nitrogen: An improved method to join Al alloys to Mg alloys[J]. Metall. Mater. Trans., 2012, 43A: 5106
doi: 10.1007/s11661-012-1314-2
[121] Ji S D, Huang R F, Meng X C, et al.Enhancing friction stir weldability of 6061-T6 Al and AZ31B Mg alloys assisted by external non-rotational shoulder[J]. J. Mater. Eng. Perform., 2017, 26: 2359
doi: 10.1007/s11665-017-2640-8
[122] Liu Z L, Ji S D, Meng X C, et al.Improving joint formation and tensile properties of friction stir welded ultra-thin Al/Mg alloy sheets using a pinless tool assisted by a stationary shoulder[J]. Int. J. Adv. Manuf. Technol., 2017, 93: 2071
doi: 10.1007/s00170-017-0682-6
[123] Xu R Z, Ni D R, Yang Q, et al.Influence of Zn coating on friction stir spot welded magnesium-aluminium joint[J]. Sci. Technol. Weld. Joining, 2017, 22: 512
doi: 10.1080/13621718.2016.1266735
[124] Wang Y, Al-Zubaidy B, Prangnell P B.The effectiveness of Al-Si coatings for preventing interfacial reaction in Al-Mg dissimilar metal welding[J]. Metall. Mater. Trans., 2018, 49A: 162
doi: 10.1007/s11661-017-4341-1
[125] Gao Y, Morisada Y, Fujii H, et al.Dissimilar friction stir lap welding of magnesium to aluminum using plasma electrolytic oxidation interlayer[J]. Mater. Sci. Eng., 2018, A711: 109
[126] Rai R, De A, Bhadeshia H K D H, et al. Review: Friction stir welding tools[J]. Sci. Technol. Weld. Joining, 2013, 16: 325
doi: 10.1179/1362171811Y.0000000023
[127] Yamamoto N, Liao J S, Watanabe S, et al.Effect of intermetallic compound layer on tensile strength of dissimilar friction-stir weld of a high strength Mg alloy and Al alloy[J]. Mater. Trans., 2009, 50: 2833
doi: 10.2320/matertrans.M2009289
[128] Azizieh M, Alavijeh A S, Abbasi M, et al.Mechanical properties and microstructural evaluation of AA1100 to AZ31 dissimilar friction stir welds[J]. Mater. Chem. Phys., 2016, 170: 251
doi: 10.1016/j.matchemphys.2015.12.046
[129] Fu B L, Qin G L, Li F, et al.Friction stir welding process of dissimilar metals of 6061-T6 aluminum alloy to AZ31B magnesium alloy[J]. J. Mater. Process. Technol., 2015, 218: 38
doi: 10.1016/j.jmatprotec.2014.11.039
[130] Ji S D, Meng X C, Liu Z L, et al.Dissimilar friction stir welding of 6061 aluminum alloy and AZ31 magnesium alloy assisted with ultrasonic[J]. Mater. Lett., 2017, 201: 173
doi: 10.1016/j.matlet.2017.05.011
[131] Liu Z L, Meng X C, Ji S D, et al.Improving tensile properties of Al/Mg joint by smashing intermetallic compounds via ultrasonic-assisted stationary shoulder friction stir welding[J]. J. Manuf. Process., 2018, 31: 552
doi: 10.1016/j.jmapro.2017.12.022
[132] Lv X Q, Wu C S, Yang C L, et al.Weld microstructure and mechanical properties in ultrasonic enhanced friction stir welding of Al alloy to Mg alloy[J]. J. Mater. Process. Technol., 2018, 254: 145
doi: 10.1016/j.jmatprotec.2017.11.031
[133] Jana S, Hovanski Y, Grant G J.Friction stir lap welding of magnesium alloy to steel: A preliminary investigation[J]. Metall. Mater. Trans., 2010, 41A: 3173
[134] Schneider C, Weinberger T, Inoue J, et al.Characterisation of interface of steel/magnesium FSW[J]. Sci. Technol. Weld. Joining, 2011, 16: 100
doi: 10.1179/1362171810Y.0000000012
[135] Chen Y C, Nakata K.Effect of surface states of steel on microstructure and mechanical properties of lap joints of magnesium alloy and steel by friction stir welding[J]. Sci. Technol. Weld. Joining, 2010, 15: 293
doi: 10.1179/136217109X12568132624325
[136] Wei Y N, Li J L, Xiong J T, et al.Microstructures and mechanical properties of magnesium alloy and stainless steel weld-joint made by friction stir lap welding[J]. Mater. Des., 2012, 33: 111
doi: 10.1016/j.matdes.2011.07.016
[137] Wang X J, Li W H, Zhao G.Connection mechanism research on friction stir spot welding without keyhole between magnesium and steel dissimilar alloys[J]. Mater. Res. Innovations, 2014, 18(Suppl.2): 1063
doi: 10.1179/1432891714Z.000000000471
[138] Chen Y, Chen J, Amirkhiz B S, et al.Microstructures and properties of Mg alloy/DP600 steel dissimilar refill friction stir spot welds[J]. Sci. Technol. Weld. Joining, 2015, 20: 494
doi: 10.1179/1362171815Y.0000000033
[139] Zhang Z K, Wang X J, Wang P C, et al.Friction stir keyholeless spot welding of AZ31 Mg alloy-mild steel[J]. Trans. Nonferrous Met. Soc. China, 2014, 24: 1709
doi: 10.1016/S1003-6326(14)63244-1
[140] Xu R Z, Ni D R, Yang Q, et al.Influencing mechanism of Al-containing Zn coating on interfacial microstructure and mechanical properties of friction stir spot welded Mg-steel joint[J]. Mater. Charact., 2018, 140: 197
doi: 10.1016/j.matchar.2018.04.011
[1] 曾荣昌, 崔蓝月, 柯伟. 医用镁合金:成分、组织及腐蚀[J]. 金属学报, 2018, 54(9): 1215-1235.
[2] 刘金辉, 宋影伟, 单大勇, 韩恩厚. 铸态和锻造态Mg-5Y-7Gd-1Nd-0.5Zr合金腐蚀行为对比研究[J]. 金属学报, 2018, 54(8): 1141-1149.
[3] 刘晏宇, 毛萍莉, 刘正, 王峰, 王志. Schmid因子的理论计算及其在镁合金高速变形过程中的应用[J]. 金属学报, 2018, 54(6): 950-958.
[4] 吴国华, 陈玉狮, 丁文江. 高性能镁合金凝固组织控制研究现状与展望[J]. 金属学报, 2018, 54(5): 637-646.
[5] 李旭东, 毛萍莉, 刘晏宇, 刘正, 王志, 王峰. 高应变速率下Mg-3Zn-1Y镁合金的各向异性及变形机制[J]. 金属学报, 2018, 54(4): 557-565.
[6] 武传松, 宿浩, 石磊. 搅拌摩擦焊接产热传热过程与材料流动的数值模拟[J]. 金属学报, 2018, 54(2): 265-277.
[7] 熊守美, 杜经莲, 郭志鹏, 杨满红, 吴孟武, 毕成, 曹永友. 镁合金压铸过程界面传热行为及凝固组织结构的表征与模拟研究[J]. 金属学报, 2018, 54(2): 174-192.
[8] 郑玉峰, 杨宏韬. 血管支架用可降解金属研究进展[J]. 金属学报, 2017, 53(10): 1227-1237.
[9] 韩林原, 李旋, 储成林, 白晶, 薛烽. 流场环境中AZ31镁合金的腐蚀行为研究[J]. 金属学报, 2017, 53(10): 1347-1356.
[10] 张小农, 左敏超, 张绍翔, 吴宏流, 王文辉, 陈文智, 倪嘉桦. 医用可降解血管支架临床研究进展[J]. 金属学报, 2017, 53(10): 1215-1226.
[11] 袁广银, 牛佳林. 可降解医用镁合金在骨修复应用中的研究进展[J]. 金属学报, 2017, 53(10): 1168-1180.
[12] 奚廷斐, 魏利娜, 刘婧, 刘小丽, 甄珍, 郑玉峰. 镁合金全降解血管支架研究进展[J]. 金属学报, 2017, 53(10): 1153-1167.
[13] 闫亚琼,罗晋如,张济山,庄林忠. 强织构AZ31镁合金板材深低温轧制过程中微观组织演变及力学性能控制研究[J]. 金属学报, 2017, 53(1): 107-113.
[14] 蔡贇,孙朝阳,万李,阳代军,周庆军,苏泽兴. AZ80镁合金动态再结晶软化行为研究*[J]. 金属学报, 2016, 52(9): 1123-1132.
[15] 王峰,马德志,王志,毛萍莉,刘正. AM50-x(Zn, Y)镁合金的显微组织、力学性能与凝固行为*[J]. 金属学报, 2016, 52(9): 1115-1122.