Please wait a minute...
金属学报  2018, Vol. 54 Issue (11): 1618-1624    DOI: 10.11900/0412.1961.2018.00391
  材料与工艺 本期目录 | 过刊浏览 |
超塑性轻合金组织稳定性的研究进展及展望
王慧远, 张行, 徐新宇, 查敏, 王珵, 马品奎, 管志平()
吉林大学材料科学与工程学院汽车材料教育部重点实验室 长春 130025
Current Research and Future Prospect on Microstructure Stability of Superplastic Light Alloys
Huiyuan WANG, Hang ZHANG, Xinyu XU, Min ZHA, Cheng WANG, Pinkui MA, Zhiping GUAN()
Key Laboratory of Automobile Materials of Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun 130025, China
引用本文:

王慧远, 张行, 徐新宇, 查敏, 王珵, 马品奎, 管志平. 超塑性轻合金组织稳定性的研究进展及展望[J]. 金属学报, 2018, 54(11): 1618-1624.
Huiyuan WANG, Hang ZHANG, Xinyu XU, Min ZHA, Cheng WANG, Pinkui MA, Zhiping GUAN. Current Research and Future Prospect on Microstructure Stability of Superplastic Light Alloys[J]. Acta Metall Sin, 2018, 54(11): 1618-1624.

全文: PDF(3092 KB)   HTML
摘要: 

金属材料超塑性一般要求具有均匀细小的等轴晶粒,并且在高温超塑变形过程中能够保持晶粒尺寸稳定性,避免晶粒快速长大。轻合金的超塑性不仅要具备等轴细晶组织,还需要通过引入第二相或合金元素等来保证材料的高温组织稳定性,这也是当前金属材料超塑性的研究热点之一。目前提高超塑性材料细晶组织稳定性的策略主要包括:析出第二相粒子钉扎晶界,双相合金的相结构之间抑制彼此生长,复合材料的增强体抑制晶粒长大以及单相合金的溶质原子偏聚等。本文概述了含析出第二相合金、双相合金、金属基复合材料和单相合金等轻合金超塑性组织稳定性的研究现状,并从工业应用需求及降低生产成本的角度,提出了超塑性材料的发展趋势。

关键词 超塑性组织稳定性第二相复合材料溶质偏聚    
Abstract

There have been numerous attempts to achieve superplasticity in light alloy materials for improving the formability and manufacture efficiency of them. However, the superplasticity of light alloy is difficult to realize for the uniform fine equiaxed grains, which are generally required by superplasticity, tend to rapidly grow during high temperature deformation. That means the superplasticity of light alloys not only requires an equiaxed fine-grained structure, but also needs to ensure the high-temperature structural stability. Thus, adding a second phase or alloying elements become one of the current research hotspots on superplasticity of light alloy materials. Currently, the main strategies for improving stability of the fine-grained structure of superplastic light alloy materials can be summarized as: introduction of second-phase particles pinning grain boundaries, phase structure of dual-phase alloys to inhibit growth between each other and reinforcement of composite materials inhibiting grain growth as well as utilizing solute segregation of single-phase alloys. This paper summarizes the research status of superplastic microstructure stability of light alloys including second-phase-containing alloys, duplex alloys, metal matrix composites and single-phase alloys. Finally, the paper proposes the development trend of superplastic light alloy materials from the perspective of industrial applications and cost-reduction requirements. Increasing the variety of alloying element, decreasing the content of alloying element, simplifying the process of manufacture and achieving low temperature superplasticity and high strain-rate superplasticity will be the development trend of superplastic light alloy materials.

Key wordssuperplasticity    microstructure stability    second phase    composite    solute segregation
收稿日期: 2018-08-20     
ZTFLH:  TG301  
基金资助:国家重点研发计划国际合作项目No.2016YFE0115300和国家自然科学基金项目 No.51625402
作者简介:

作者简介 王慧远,男,1974年生,教授,博士

图1  4种典型组织稳定性提高方式的示意图
Strategy Alloy Processing method T / ℃ ε˙ / s-1 EL / % Ref.
Second-phase- Al-5Mg-0.18Mn-0.2Sc ECAP 450 5.0×10-2 ~4100 [17]
containing alloy Al-6.1Mg-0.3Mn-0.25Sc ASR 500 5.0×10-2 ~3170 [18]
Mg-8Sn-Al-Zn Extrusion 200 10-4 ~900 [19]
Mg-5Al-5Ca Extrusion 400 3.6×10-4 ~572 [20]
Mg-9Al-1Zn Rolling 300 10-3 ~735 [21]
Mg-7Al-5Zn HPR 300 10-3 ~615 [22]
Duplex alloy Zn-0.3Al ECAP RT 10-4 ~1000 [23]
Zn-21Al-2Cu Extrusion+Rolling 240 10-3 ~1000 [24]
Metal matrix Ti5Si3+40%TiAl MA+HIP 950 4×10-5 ~150 [25]
composite (volume fraction)
7075Al+10%Al2O3 HPT 350 10-2 ~670 [26]
(volume fraction)
6063Al +5%Al3Zr Forging+FSP 500 10-2 ~330 [27]
(mass fraction)
Single-phase alloy Al-7Mg ECAP 300 10-3 ~500
表1  不同超塑性材料的加工方式与超塑性性能[17,18,19,20,21,22,23,24,25,26,27]
图2  具有超塑性的混晶结构镁合金的微观组织
[1] Novikov I I. 50-th anniversary of russian investigations on superplasticity [J]. Mater. Sci. Forum, 1994, 170-172: 3
[2] Yang C, Wang J J, Ma Z Y, et al.Friction stir welding and low-temperature superplasticity of 7B04 Al sheet[J]. Acta Metall. Sin., 2016, 51: 1449(杨超, 王继杰, 马宗义等. 7B04铝合金薄板的搅拌摩擦焊接及接头低温超塑性研究[J]. 金属学报, 2016, 51: 1449)
[3] Fu M J, Han X Q, Wu W, et al.Superplasticity research of Ti-23Al-17Nb alloy sheet[J]. Acta Metall. Sin., 2014, 50: 955(付明杰, 韩秀全, 吴为等. Ti-23Al-17Nb合金板材超塑性研究[J]. 金属学报, 2014, 50: 955)
[4] Barnes A J.Superplastic forming 40 years and still growing[J]. J. Mater. Eng. Perform., 2007, 16: 440
[5] Kawasaki M, Langdon T G.Review: Achieving superplasticity in metals processed by high-pressure torsion[J]. J. Mater. Sci., 2014, 49: 6487
[6] Sherby O D, Wadsworth J.Superplasticity—Recent advances and future directions[J]. Prog. Mater. Sci., 1989, 33: 169
[7] Higashi K. Recent advances and future directions in superplasticity [J]. Mater. Sci. Forum, 2001, 357-359: 345
[8] Guan Z P, Ma P K, Song Y Q.Analysis of fracture during superplastic tension[J]. Acta Metall. Sin., 2013, 49: 1003(管志平, 马品奎, 宋玉泉. 超塑性拉伸断裂分析[J]. 金属学报, 2013, 49: 1003)
[9] Gu C F, Tóth L S, Field D P, et al.Room temperature equal-channel angular pressing of a magnesium alloy[J]. Acta Mater., 2013, 61: 3027
[10] Cao G H, Zhang D T, Chai F, et al.Superplastic behavior and microstructure evolution of a fine-grained Mg-Y-Nd alloy processed by submerged friction stir processing[J]. Mater. Sci. Eng., 2015, A642: 157
[11] Kawasaki M, Langdon T G.Review: Achieving superplastic properties in ultrafine-grained materials at high temperatures[J]. J. Mater. Sci., 2016, 51: 19
[12] Apps P J, Bowen J R, Prangnell P B.The effect of coarse second-phase particles on the rate of grain refinement during severe deformation processing[J]. Acta Mater., 2003, 51: 2811
[13] Lee S, Utsunomiya A, Akamatsu H, et al.Influence of scandium and zirconium on grain stability and superplastic ductilities in ultrafine-grained Al-Mg alloys[J]. Acta Mater., 2002, 50: 553
[14] Bate P S, Huang Y, Humphreys F J.Development of the "brass" texture component during the hot deformation of Al-6Cu-0.4Zr[J]. Acta Mater., 2004, 52: 4281
[15] Hsiao I C, Huang J C.Deformation mechanisms during low- and high-temperature superplasticity in 5083 Al-Mg alloy[J]. Metall. Mater. Trans., 2002, 33A: 1373
[16] Romilly P.Superplastic improvement of aluminum 7475-T4 industrial sheets using a heat treatment[J]. Mater. Sci. Forum, 2012, 735: 332
[17] Avtokratova E, Sitdikov O, Markushev M, et al.Extraordinary high-strain rate superplasticity of severely deformed Al-Mg-Sc-Zr alloy[J]. Mater. Sci. Eng., 2012, A538: 386
[18] Duan Y L, Xu G F, Tang L, et al.Excellent high strain rate superplasticity of Al-Mg-Sc-Zr alloy sheet produced by an improved asymmetrical rolling process[J]. J. Alloys Compd., 2017, 715: 311
[19] Park S S, You B S.Low-temperature superplasticity of extruded Mg-Sn-Al-Zn alloy[J]. Scr. Mater., 2011, 65: 202
[20] Wang X, Chen D, Xiao D, et al.Superplasticity of Mg-Al-Ca alloys with high Ca/Al ratio[J]. Mater. Rev., 2016, 30(20): 71(王新, 陈鼎, 肖迪等. 高Ca/Al比的Mg-Al-Ca合金的超塑性[J]. 材料导报, 2016, 30(20): 71)
[21] Zha M, Zhang H M, Wang C, et al.Prominent role of a high volume fraction of Mg17Al12 particles on tensile behaviors of rolled Mg-Al-Zn alloys[J]. J. Alloys Compd., 2017, 728: 682
[22] Rong J, Wang P Y, Zha M, et al.Development of a novel strength ductile Mg-7Al-5Zn alloy with high superplasticity processed by hard-plate rolling (HPR)[J]. J. Alloys Compd., 2018, 738: 246
[23] Demirtas M, Purcek G, Yanar H, et al.Effect of equal-channel angular pressing on room temperature superplasticity of quasi-single phase Zn-0.3Al alloy[J]. Mater. Sci. Eng., 2015, A644: 17
[24] Ramos-Azpeitia M, Elizabeth Martínez-Flores E, Hernandez-Rivera J L, et al. Analysis of plastic flow instability during superplastic deformation of the Zn-Al eutectoid alloy modified with 2 wt.% Cu[J]. J. Mater. Eng. Perform., 2017, 26: 5304
[25] Klassen T, Suryanarayana C, Bormann R.Low-temperature superplasticity in ultrafine-grained Ti5Si3-TiAl composites[J]. Scr. Mater., 2008, 59: 455
[26] Sabbaghianrad S, Langdon T G.Developing superplasticity in an aluminum matrix composite processed by high-pressure torsion[J]. Mater. Sci. Eng., 2016, A655: 36
[27] Jiao L, Wang X L, Li H, et al.High strain rate superplasticity of in situ Al3Zr/6063Al composites[J]. Rare Met. Mater. Eng., 2016, 45: 2798
[28] Liu X H, Zhan H B, Gu S H, et al.Superplasticity in a two-phase Mg-8Li-2Zn alloy processed by two-pass extrusion[J]. Mater. Sci. Eng., 2011, A528: 6157
[29] Zha M, Yu Z Y, Qian F, et al.Achieving dispersed fine soft Bi particles and grain refinement in a hypermonotectic Al-Bi alloy by severe plastic deformation and annealing[J]. Scr. Mater., 2018, 155: 124
[30] Darling K A, VanLeeuwen B K, Koch C C, et al. Thermal stability of nanocrystalline Fe-Zr alloys[J]. Mater. Sci. Eng., 2010, A527: 3572
[31] Schuler J D, Donaldson O K, Rupert T J.Amorphous complexions enable a new region of high temperature stability in nanocrystalline Ni-W[J]. Scr. Mater., 2018, 154: 49
[32] Hu J, Shi Y N, Lu K.Thermal analysis of electrodeposited nano-grained Ni-Mo alloys[J]. Scr. Mater., 2018, 154: 182
[33] Sun W T, Qiao X G, Zheng M Y, et al.Altered ageing behaviour of a nanostructured Mg-8.2Gd-3.8Y-1.0Zn-0.4Zr alloy processed by high pressure torsion[J]. Acta Mater., 2018, 151: 260
[34] Zha M, Li Y J, Mathiesen R H, et al.Microstructure evolution and mechanical behavior of a binary Al-7Mg alloy processed by equal-channel angular pressing[J]. Acta Mater., 2015, 84: 42
[35] Zha M, Li Y J, Mathiesen R H, et al.Annealing response of binary Al-7Mg alloy deformed by equal channel angular pressing[J]. Mater. Sci. Eng., 2013, A586: 374
[1] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[2] 马宗义, 肖伯律, 张峻凡, 朱士泽, 王东. 航天装备牵引下的铝基复合材料研究进展与展望[J]. 金属学报, 2023, 59(4): 457-466.
[3] 马国楠, 朱士泽, 王东, 肖伯律, 马宗义. SiC颗粒增强Al-Zn-Mg-Cu复合材料的时效行为和力学性能[J]. 金属学报, 2023, 59(12): 1655-1664.
[4] 娄峰, 刘轲, 刘金学, 董含武, 李淑波, 杜文博. 轧制态Mg-xZn-0.5Er合金板材组织及室温成形性能[J]. 金属学报, 2023, 59(11): 1439-1447.
[5] 姜江, 郝世杰, 姜大强, 郭方敏, 任洋, 崔立山. NiTi-Nb原位复合材料的准线性超弹性变形[J]. 金属学报, 2023, 59(11): 1419-1427.
[6] 沈莹莹, 张国兴, 贾清, 王玉敏, 崔玉友, 杨锐. SiCf/TiAl复合材料界面反应及热稳定性[J]. 金属学报, 2022, 58(9): 1150-1158.
[7] 温冬辉, 姜贝贝, 王清, 李相伟, 张鹏, 张书彦. MoNb改性FeCrAl不锈钢高温组织演变和力学性能[J]. 金属学报, 2022, 58(7): 883-894.
[8] 谷瑞成, 张健, 张明阳, 刘艳艳, 王绍钢, 焦大, 刘增乾, 张哲峰. 三维互穿结构SiC晶须骨架增强镁基复合材料制备及其力学性能[J]. 金属学报, 2022, 58(7): 857-867.
[9] 潘成成, 张翔, 杨帆, 夏大海, 何春年, 胡文彬. 三维石墨烯/Cu复合材料在模拟海水环境中的腐蚀和空蚀行为[J]. 金属学报, 2022, 58(5): 599-609.
[10] 王浩伟, 赵德超, 汪明亮. 原位自生TiB2/Al基复合材料的腐蚀防护技术研究现状[J]. 金属学报, 2022, 58(4): 428-443.
[11] 张雷, 施韬, 黄火根, 张培, 张鹏国, 吴敏, 法涛. 铀基非晶复合材料的相分离与凝固序列研究[J]. 金属学报, 2022, 58(2): 225-230.
[12] 陈润, 王帅, 安琦, 张芮, 刘文齐, 黄陆军, 耿林. 热挤压与热处理对网状TiBw/TC18复合材料组织及性能的影响[J]. 金属学报, 2022, 58(11): 1478-1488.
[13] 范根莲, 郭峙岐, 谭占秋, 李志强. 金属材料的构型化复合与强韧化[J]. 金属学报, 2022, 58(11): 1416-1426.
[14] 聂金凤, 伍玉立, 谢可伟, 刘相法. Al-AlN异构纳米复合材料的组织构型与热稳定性[J]. 金属学报, 2022, 58(11): 1497-1508.
[15] 赵宇宏, 景舰辉, 陈利文, 徐芳泓, 侯华. 装甲防护陶瓷-金属叠层复合材料界面研究进展[J]. 金属学报, 2021, 57(9): 1107-1125.