Please wait a minute...
金属学报  2019, Vol. 55 Issue (6): 773-782    DOI: 10.11900/0412.1961.2018.00377
  本期目录 | 过刊浏览 |
316L奥氏体不锈钢非对称载荷下的疲劳与循环塑性行为
彭剑1,2(),高毅1,代巧2,3,王颖1,李凯尚1
1. 常州大学机械工程学院 常州 213164
2. 常州大学江苏省绿色过程装备重点实验室 常州 213164
3. 江苏理工学院机械工程学院 常州 213001
Fatigue and Cycle Plastic Behavior of 316L Austenitic Stainless Steel Under Asymmetric Load
Jian PENG1,2(),Yi GAO1,Qiao DAI2,3,Ying WANG1,Kaishang LI1
1. School of Mechanical Engineering, Changzhou University, Changzhou 213164, China
2. Jiangsu Key Laboratory of Green Process Equipment, Changzhou University, Changzhou 213164, China
3. School of Mechanical Engineering, Jiangsu University of Technology, Changzhou 213001, China
全文: PDF(11728 KB)   HTML
摘要: 

对316L奥氏体不锈钢非对称拉-拉疲劳载荷作用下的疲劳和循环塑性行为进行研究。通过疲劳寿命、循环应变幅、平均应变、平均应变率和失效应变的差异划分高、低应力区:在高应力区,平均应变、平均应变率和失效应变大,存在显著的循环塑性变形,疲劳寿命短;在低应力区,循环塑性变形累积有限,疲劳寿命显著增加。通过失效区域的显微组织观察和断口分析发现:在高应力区断口附近产生了大量的孔洞,断口以韧窝为主要特征;在低应力区存在疲劳裂纹,其扩展方向垂直于加载方向,断口由起裂点、疲劳裂纹扩展区、过渡区和快速断裂区组成。316L奥氏体不锈钢高应力区为循环塑性变形主导区,失效形式为循环塑性累积产生的韧性失效;低应力区为疲劳主导区,失效形式为疲劳裂纹扩展失效。

关键词 316L奥氏体不锈钢疲劳循环塑性变形失效模式    
Abstract

Due to excellent mechanical property and corrosion resistance of 316L austenitic stainless steel, it is widely used in chemical industry, but its fatigue behavior under asymmetric cycle load is not well understood. In this work, the fatigue and cyclic plastic deformation behavior of 316L austenitic stainless steel under asymmetric tensile-tensile cycle loading are studied, focusing on the variations of fatigue life, cycle plastic deformation and fracture mechanism with applied cycle load. The high and low stress regions can be clearly divided based on the differences of fatigue life, cyclic strain amplitude, mean strain, mean strain rate and failure strain. In the high stress region, mean strain, mean strain rate and failure strain are large, resulting in the significant cyclic plastic deformation, and the fatigue life is short. In the low stress region, the cyclic plastic deformation accumulation is limited, and the fatigue life is significantly increased. Through microstructural observations near fracture area and fracture surface analyses, the differences between large stress region and low stress region can be found. In the high stress region, a large number of voids are generated near the fracture surface, and the fracture surface is mainly featured by dimples. In contrast, in the low stress region, the fatigue crack is found near the fracture surface, and its propagation direction is perpendicular to the loading direction. The fatigue crack initiation site, the fatigue crack propagation zone, transition zone and rapid fracture zone are found on the fracture surface. Results of fracture mechanism analyses suggest that, the high stress region of 316L austenitic stainless steel is the cyclic plastic deformation dominant region, and the failure mechanism is the ductile failure caused by the accumulation of cyclic plastic deformation; while the low stress region is the fatigue dominant zone, and the failure mechanism is the fatigue crack propagation failure.

Key words316L austenitic stainless steel    fatigue    cyclic plastic deformation    failure mode
收稿日期: 2018-08-16      出版日期: 2019-03-06
ZTFLH:  TG111.8  
基金资助:国家自然科学基金项目(Nos.51805230);国家自然科学基金项目(51505041);江苏省高校自然科学基金项目(No.16KJB460002)
通讯作者: 彭剑     E-mail: jpeng@cczu.edu.cn
Corresponding author: Jian PENG     E-mail: jpeng@cczu.edu.cn
作者简介: 彭 剑,男,1987年生,博士

引用本文:

彭剑,高毅,代巧,王颖,李凯尚. 316L奥氏体不锈钢非对称载荷下的疲劳与循环塑性行为[J]. 金属学报, 2019, 55(6): 773-782.
Jian PENG,Yi GAO,Qiao DAI,Ying WANG,Kaishang LI. Fatigue and Cycle Plastic Behavior of 316L Austenitic Stainless Steel Under Asymmetric Load. Acta Metall, 2019, 55(6): 773-782.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2018.00377      或      http://www.ams.org.cn/CN/Y2019/V55/I6/773

No.σa / MPaσmax / MPaσmin / MPaNf / cyc
1270.0060060.0314
2-R1261.0058058.0424
2-R2261.0058058.0622
2-R3261.0058058.0664
3-R1256.5057057.0586
3-R2256.5057057.06404
3-R3256.5057057.04664
4-R1252.0056056.026524
4-R2252.0056056.017204
4-R3252.0056056.023864
5247.5055055.034606
6236.2552552.550424
7225.0050050.055759
8213.7547547.589548
9202.5045045.093578
10191.2542542.5124136
表1  316L奥氏体不锈钢疲劳实验方案及疲劳寿命(应力比R=0.1)
图1  316L奥氏不锈钢显微组织的OM像
图2  316L奥氏体不锈钢循环应变幅与循环周次(N)的关系
图3  316L奥氏体不锈钢在不同循环载荷作用下平均应变的演化规律
图4  低应力区和高应力区平均应变和平均应变率随循环次数的演化规律
图5  失效平均应变和半寿命周期平均应变率与最大循环应力的关系
图6  平均应力不变、最大应力增加和最大应力不变、平均应力增加时阶梯疲劳载荷加载示意图
图7  平均应力不变、最大应力增加和最大应力不变、平均应力增加时阶梯疲劳循环应变幅演化规律
图8  平均应力不变、最大应力增加和最大应力不变、平均应力增加时阶梯疲劳载荷下平均应变演化规律
图9  316L奥氏体不锈钢最大应力-疲劳寿命曲线
图10  最大应力为580 MPa时高应力区试样断口表面的OM像
图11  最大应力为525 MPa时低应力区试样断口附近OM像
图12  最大应力为580 MPa时高应力区试样断口形貌的SEM像
图13  最大应力为525 MPa时低应力区试样断口形貌的SEM像
[1] Zhang Z F, Liu R, Zhang Z J, et al. Exploration on the unified model for fatigue properties prediction of metallic materials [J]. Acta Metall. Sin., 2018, 54: 1693
[1] (张哲峰, 刘 睿, 张振军等. 金属材料疲劳性能预测统一模型探索 [J]. 金属学报, 2018, 54: 1693)
[2] Li Q, Yan F K, Tao N R. Enhanced fatigue damage resistance of nanotwinned austenitic grains in a nanotwinned stainless steel [J]. Scr. Mater., 2017, 136: 59
doi: 10.1016/j.scriptamat.2017.04.011
[3] Xie X F, Ning D, Sun J. Strain-controlled fatigue behavior of cold-drawn type 316 austenitic stainless steel at room temperature [J]. Mater. Charact., 2016, 120: 195
doi: 10.1016/j.matchar.2016.08.031
[4] Mazánová V, Škorík V, Kruml T, et al. Cyclic response and early damage evolution in multiaxial cyclic loading of 316L austenitic steel [J]. Int. J. Fatigue, 2017, 100: 466
doi: 10.1016/j.ijfatigue.2016.11.018
[5] Xie X F, Jiang W C, Luo Y, et al. A model to predict the relaxation of weld residual stress by cyclic load: Experimental and finite element modeling [J]. Int. J. Fatigue, 2017, 95: 293
doi: 10.1016/j.ijfatigue.2016.11.011
[6] Zhang W Y, Jiang W C, Zhao X, et al. Fatigue life of a dissimilar welded joint considering the weld residual stress: Experimental and finite element simulation [J]. Int. J. Fatigue, 2018, 109: 182
doi: 10.1016/j.ijfatigue.2018.01.002
[7] Kang G Z, Gao Q, Yang X J. Uniaxial and non-proportionally multiaxial ratcheting of SS304 stainless steel at room temperature: Experiments and simulations [J]. Int. J. Non-Linear Mech., 2004, 39: 843
doi: 10.1016/S0020-7462(03)00060-X
[8] De P S, Kundu A, Chakraborti P C. Effect of prestrain on tensile properties and ratcheting behaviour of Ti-stabilised interstitial free steel [J]. Mater. Des., 2014, 57: 87
doi: 10.1016/j.matdes.2013.12.029
[9] Chen X H, Chen X, Chen H F. Influence of stress level on uniaxial ratcheting effect and ratcheting strain rate in austenitic stainless steel Z2CND18.12N [J]. Steel Compos. Struct., 2018, 27: 89
[10] Abdollahi E, Chakherlou T N. Numerical and experimental study of ratcheting in cold expanded plate of Al‐alloy 2024‐T3 in double shear lap joints [J]. Fatigue Fract. Eng. Mater. Struct., 2018, 41: 41
doi: 10.1111/ffe.12643
[11] Lin Y C, Chen X M, Chen G. Uniaxial ratcheting and low-cycle fatigue failure behaviors of AZ91D magnesium alloy under cyclic tension deformation [J]. J. Alloys Compd., 2011, 509: 6838
doi: 10.1016/j.jallcom.2011.03.129
[12] Lin Y C, Chen X M, Liu Z H, et al. Investigation of uniaxial low-cycle fatigue failure behavior of hot-rolled AZ91 magnesium alloy [J]. Int. J. Fatigue, 2013, 48: 122
doi: 10.1016/j.ijfatigue.2012.10.010
[13] Rajpurohit R S, Rao G S, Chattopadhyay K, et al. Ratcheting fatigue behavior of Zircaloy-2 at room temperature [J]. J. Nucl. Mater., 2016, 477: 67
doi: 10.1016/j.jnucmat.2016.05.014
[14] Zhu S P, Lei Q, Wang Q Y. Mean stress and ratcheting corrections in fatigue life prediction of metals [J]. Fatigue Fract. Eng. Mater. Struct., 2017, 40: 1343
doi: 10.4028/www.scientific.net/AMM.853.57
[15] Ding J, Kang G Z , Zhu Y L, et al. Finite element analysis on bending fretting fatigue of 316L stainless steel considering ratchetting and cyclic hardening [J]. Int. J. Mech. Sci., 2014, 86: 26
doi: 10.1016/j.ijmecsci.2013.09.015
[16] Facheris G, Pham M S, Janssens K G F, et al. Microscopic analysis of the influence of ratcheting on the evolution of dislocation structures observed in AISI 316L stainless steel during low cycle fatigue [J]. Mater. Sci. Eng., 2013, A587: 1
doi: 10.1016/j.msea.2013.08.041
[17] Luo H L, Kang G Z, Kan Q H, et al. Experimental investigation on the heterogeneous ratchetting of SUS301L stainless steel butt weld joint during uniaxial cyclic loading [J]. Int. J. Fatigue, 2017, 105: 169
doi: 10.1016/j.ijfatigue.2017.08.027
[18] Kang G Z, Liu Y J, Li Z. Experimental study on ratchetting-fatigue interaction of SS304 stainless steel in uniaxial cyclic stressing [J]. Mater. Sci. Eng., 2006, A435-436: 396
doi: 10.1016/j.msea.2006.07.006
[19] Yan Z F, Wang D H, Wang W X, et al. Ratcheting strain and microstructure evolution of AZ31B magnesium alloy under a tensile-tensile cyclic loading [J]. Materials, 2018, 11: 513
doi: 10.3390/ma11040513
[20] Yuan X Y, Yu W W, Fu S C, et al. Effect of mean stress and ratcheting strain on the low cycle fatigue behavior of a wrought 316LN stainless steel [J]. Mater. Sci. Eng., 2016, A677: 193
doi: 10.1016/j.msea.2016.09.053
[21] Tian J, Yang Y, Zhang L P, et al. Ratcheting behavior of SA508-3 steel at elevated temperature: Experimental observation and simulation [J]. Acta Metall. Sin. (Engl. Lett.), 2017, 30: 822
doi: 10.1007/s40195-017-0588-1
[22] Kan Q H, Kang G Z, Zhang J, et al. Experimental study on non-proportionally multiaxial time-dependent cyclic deformations of ss304 stainless steel at high temperature [J]. Acta Metall. Sin., 2005, 41: 963
doi: 10.3321/j.issn:0412-1961.2005.09.012
[22] (阚前华, 康国政, 张 娟等. SS304不锈钢高温非比例多轴加载下时相关循环变形行为的实验研究 [J]. 金属学报, 2005, 41: 963)
doi: 10.3321/j.issn:0412-1961.2005.09.012
[23] Lin Y C, Liu Z H, Chen X M, et al. Uniaxial ratcheting and fatigue failure behaviors of hot-rolled AZ31B magnesium alloy under asymmetrical cyclic stress-controlled loadings [J]. Mater. Sci. Eng., 2013, A573: 234
doi: 10.1016/j.msea.2013.03.004
[24] Lim C B, Kim K S, Seong J B. Ratcheting and fatigue behavior of a copper alloy under uniaxial cyclic loading with mean stress [J]. Int. J. Fatigue, 2009, 31: 501
doi: 10.1016/j.ijfatigue.2008.04.008
[25] Lin Y C, Liu Z H, Chen X M, et al. Stress-based fatigue life prediction models for AZ31B magnesium alloy under single-step and multi-step asymmetric stress-controlled cyclic loadings [J]. Comput. Mater. Sci., 2013, 73: 128
doi: 10.1016/j.commatsci.2013.02.023
[26] Paul S K, Stanford N, Taylor A, et al. The effect of low cycle fatigue, ratcheting and mean stress relaxation on stress-strain response and microstructural development in a dual phase steel [J]. Int. J. Fatigue, 2015, 80: 341
doi: 10.1016/j.ijfatigue.2015.06.003
[27] Liang T, Chen X, Cheng H C, et al. Thermal aging effect on the ratcheting-fatigue behavior of Z2CND18.12N stainless steel [J]. Int. J. Fatigue, 2015, 72: 19
doi: 10.1016/j.ijfatigue.2014.10.014
[28] Wang W, Zheng X T, Yu J Y, et al. Time-dependent ratcheting of 35CrMo structural steel at elevated temperature considering stress rates [J]. Mater. High Temp., 2016, 34: 172
doi: 10.1080/09603409.2016.1261511
[29] Peng J, Zhou C Y, Dai Q, et al. Fatigue and ratcheting behaviors of CP-Ti at room temperature [J]. Mater. Sci. Eng., 2014, A590: 329
doi: 10.1016/j.msea.2013.10.063
[30] Li H, Wen M J, Chen G, et al. Constitutive modeling for the anisotropic uniaxial ratcheting behavior of Zircaloy-4 alloy at room temperature [J]. J. Nucl. Mater., 2013, 443: 152
doi: 10.1016/j.jnucmat.2013.06.052
[31] Kang G Z, Liu Y J. Uniaxial ratchetting and low-cycle fatigue failure of the steel with cyclic stabilizing or softening feature [J]. Mater. Sci. Eng., 2008, A472: 258
doi: 10.1016/j.msea.2007.03.029
[32] Dutta K, Ray K K. Ratcheting phenomenon and post-ratcheting tensile behaviour of an aluminum alloy [J]. Mater. Sci. Eng., 2012, A540: 30
doi: 10.1016/j.msea.2012.01.024
[33] Kang G Z, Dong Y W, Wang H, et al. Dislocation evolution in 316L stainless steel subjected to uniaxial ratchetting deformation [J]. Mater. Sci. Eng., 2010, A527: 5952
doi: 10.1016/j.msea.2010.06.020
[34] Dutta K, Kishor R, Sahu L, et al. On the role of dislocation characters influencing ratcheting deformation of austenitic stainless steel [J]. Mater. Sci. Eng., 2016, A660: 47
doi: 10.1016/j.msea.2016.02.076
[35] Gaudin C, Feaugas X. Cyclic creep process in AISI 316L stainless steel in terms of dislocation patterns and internal stresses [J]. Acta Mater., 2004, 52: 3097
doi: 10.1016/j.actamat.2004.03.011
[36] Shao C W, Shi F, Li X W. Influence of cyclic stress amplitude on mechanisms of deformation of a high nitrogen austenitic stainless steel [J]. Mater. Sci. Eng., 2016, A667: 208
doi: 10.1016/j.msea.2016.05.007
[1] 王晨, 王贝贝, 薛鹏, 王东, 倪丁瑞, 陈礼清, 肖伯律, 马宗义. SiCp/6092Al复合材料搅拌摩擦焊接头的疲劳行为研究[J]. 金属学报, 2019, 55(1): 149-159.
[2] 宋哲, 吴圣川, 胡雅楠, 康国政, 付亚楠, 肖体乔. 冶金型气孔对熔化焊接7020铝合金疲劳行为的影响[J]. 金属学报, 2018, 54(8): 1131-1140.
[3] 何卫锋, 李翔, 聂祥樊, 李应红, 罗思海. 钛合金薄壁构件激光冲击残余应力稳定性研究[J]. 金属学报, 2018, 54(3): 411-418.
[4] 张广平, 陈红蕾, 罗雪梅, 张滨. 微纳米尺度金属导电材料热疲劳研究进展[J]. 金属学报, 2018, 54(3): 357-366.
[5] 张哲峰, 刘睿, 张振军, 田艳中, 张鹏. 金属材料疲劳性能预测统一模型探索[J]. 金属学报, 2018, 54(11): 1693-1704.
[6] 马也飞, 宋竹满, 张思倩, 陈立佳, 张广平. 小尺度CA6NM马氏体不锈钢样品疲劳性能评价研究[J]. 金属学报, 2018, 54(10): 1359-1367.
[7] 刘汉青, 何超, 黄志勇, 王清远. TC17合金超高周疲劳裂纹萌生机理[J]. 金属学报, 2017, 53(9): 1047-1054.
[8] 张青松,朱振宇,高杰维,戴光泽,徐磊,冯健. 各向异性和偏轴加载对1050车轮钢疲劳性能的影响[J]. 金属学报, 2017, 53(3): 307-315.
[9] 徐超, 佴启亮, 姚志浩, 江河, 董建新. 晶界氧化对GH4738高温合金疲劳裂纹扩展的作用[J]. 金属学报, 2017, 53(11): 1453-1460.
[10] 桂晓露,张宝祥,高古辉,赵平,白秉哲,翁宇庆. Q-P-T处理贝氏体/马氏体复相高强钢疲劳断裂特性研究*[J]. 金属学报, 2016, 52(9): 1036-1044.
[11] 刘小龙,孙成奇,周砚田,洪友士. 微结构和应力比对Ti-6Al-4V高周和超高周疲劳行为的影响*[J]. 金属学报, 2016, 52(8): 923-930.
[12] 高玉魁. 不同表面改性强化处理对TC4钛合金表面完整性及疲劳性能的影响*[J]. 金属学报, 2016, 52(8): 915-923.
[13] 郭巍巍,齐成军,李小武. 共轭和临界双滑移取向Cu单晶体疲劳位错结构的热稳定性研究*[J]. 金属学报, 2016, 52(6): 761-768.
[14] 朱莉娜,邓彩艳,王东坡,胡绳荪. 表面粗糙度对Ti-6Al-4V合金超高周疲劳性能的影响*[J]. 金属学报, 2016, 52(5): 583-591.
[15] 谢君, 于金江, 孙晓峰, 金涛. K416B镍基铸造高温合金的700 ℃高周疲劳行为*[J]. 金属学报, 2016, 52(3): 257-263.