Please wait a minute...
金属学报  2019, Vol. 55 Issue (8): 1049-1057    DOI: 10.11900/0412.1961.2018.00373
  本期目录 | 过刊浏览 |
TiC含量对铁基复合材料力学性能及耐磨性能的影响
董虎林,包海萍,彭建洪()
青海民族大学物理与电子信息工程学院 西宁 810007
Effect of TiC Contents on Mechanical Properties and Wear Resistance of Iron-Based Composites
Hulin DONG,Haiping BAO,Jianhong PENG()
Department of Physics and Electron Information Engineering, Qinghai University for Nationality, Xining 810007, China
引用本文:

董虎林,包海萍,彭建洪. TiC含量对铁基复合材料力学性能及耐磨性能的影响[J]. 金属学报, 2019, 55(8): 1049-1057.
Hulin DONG, Haiping BAO, Jianhong PENG. Effect of TiC Contents on Mechanical Properties and Wear Resistance of Iron-Based Composites[J]. Acta Metall Sin, 2019, 55(8): 1049-1057.

全文: PDF(12255 KB)   HTML
摘要: 

利用机械合金化(MA)和真空热压烧结(HP)的方法,以Ti粉、石墨粉和灰铸铁粉为初始原料,原位合成了TiC颗粒增强的铁基复合材料。利用XRD和FESEM (附带EDS)研究了复合材料的物相成分、微观结构和增强体的分布情况。利用密度测试仪、洛氏硬度计、电子万能试验机和销-盘式两体磨料磨损试验机分别测试了复合材料的密度、硬度、压缩应力-应变和抗两体磨料磨损性能。结果表明:在70 MPa压力下于1200 ℃烧结60 min制备的原位TiC颗粒增强的铁基复合材料只含TiC和α-Fe,并且TiC颗粒弥散均匀分布于Fe基体中。当原位TiC的含量为40% (质量分数)时,该复合材料的综合性能最佳,其相对密度和硬度分别达到96.54%和34 HRC (未热处理);同时压缩性能也最佳,其压缩弹性模量、屈服强度、最大压缩强度和断裂应变分别为19.6 GPa、420 MPa、605 MPa和6.1%;其具有最好的耐磨性能,当载荷为1.5 kg时,其相对耐磨性是纯灰铸铁的2.67倍。

关键词 原位反应TiC/Fe复合材料力学性能耐磨性能    
Abstract

The TiC particle reinforced iron-based composite materials were prepared by mechanical alloying (MA) and vacuum hot-pressing (HPing) using titanium (99.9%, 75 μm), graphite (>99.9%, 10 μm) and grey cast iron (>99.5%, 25 μm) powders as starting materials. And TiC particles were also in situ synthesized during HPing. The phase composition, microstructures and distribution of TiC of as-fabricated composite materials were investigated using XRD and FESEM equipped with EDS. The density, hardness, compressive stress-strain and two-body abrasive wear behavior of as-fabricated composite materials were tested using densitometer, rockwell hardness tester, electro-mechanical universal testing machines and pin-on-disk type two body abrasive wear tester, respectively. The results confirm that the in situ synthesized TiC particulate reinforced iron-based composite materials only have TiC and α-Fe phases when sintered at 1200 ℃ for 60 min at the pressure of 70 MPa. The TiC particles were dispersed homogeneously in the iron matrix. The composite with TiC content of 40% (TiC40/Fe) possesses the best comprehensive performance among all as-produced TiC/Fe composites. Its relative density and hardness are 94% and 34 HRC (without heat treatment), respectively. And the compressive property of the TiC40/Fe composite is the best too. Its elastic modulus, yield strength, maximum compressive strength and fracture strain are 19.6 GPa, 420 MPa, 605 MPa and 6.1%, respectively. The TiC40/Fe composite has the best wear resistance, especially at 1.5 kg load, its relative wear resistance is 2.67 times higher than that of pure grey casting iron.

Key wordsin situ reaction    TiC/Fe composite    mechanical property    wear resistance
收稿日期: 2018-08-16     
ZTFLH:  TB333  
基金资助:国际科技合作项目((No.2015DFR50990));青海省国际科技合作专项项目(Nos.2014-HZ-819 and 2015-HZ-811)
作者简介: 董虎林,男,1990年生,硕士生
图1  纯灰铸铁和TiC颗粒增强铁基复合材料的XRD谱
图2  TiC颗粒增强的铁基复合材料的SEM像和EDS
Sampleρt / (g·cm-3)ρm / (g·cm-3)ρr / %Porosity / %
20%TiC/Fe7.2406.77893.626.38
30%TiC/Fe6.7256.35294.455.55
40%TiC/Fe6.2586.04296.543.46
50%TiC/Fe5.9905.46491.218.79
表1  原位TiC颗粒增强的铁基复合材料的致密性
图3  原位TiC颗粒增强铁基复合材料的Rockwell硬度
图4  原位TiC颗粒增强铁基复合材料和纯灰铸铁的压缩应力-应变曲线
图5  纯灰铸铁和原位TiC颗粒增强铁基复合材料的压缩断裂实物图
Load / kgPure grey iron20%TiC/Fe30%TiC/Fe40%TiC/Fe50%TiC/Fe
0.50.00590.00560.00370.00250.0045
1.00.00890.00790.00450.00360.0053
1.50.01050.00840.00470.00390.0061
2.00.01130.00860.00520.00440.0067
2.50.01160.00870.00660.00540.0077
表2  纯灰铸铁和原位TiC颗粒增强铁基复合材料的体积磨损量
Load / kg20%TiC/Fe30%TiC/Fe40%TiC/Fe50%TiC/Fe
0.51.061.592.331.70
1.01.111.982.481.75
1.51.392.382.671.90
2.01.122.062.481.45
2.51.341.512.161.75
表3  原位TiC颗粒增强铁基复合材料的相对耐磨性
图6  2.5 kg载荷下纯灰铸铁和原位TiC颗粒增强的铁基复合材料磨损表面形貌的SEM像
[1] Uematsu Y, Kakiuchi T, Tokaji K, et al. Effects of shot peening on fatigue behavior in high speed steel and cast iron with spheroidal vanadium carbides dispersed within martensitic-matrix microstructure [J]. Mater. Sci. Eng., 2013, A561: 386
[2] Cao Y B, Zhi S X, Gao Q, et al. Formation behavior of in-situ NbC in Fe-based laser cladding coatings [J]. Mater. Charact., 2016, 119: 159
[3] Zhao N N, Xu Y H, Wang J F, et al. Microstructure and kinetics study on tantalum carbide coating produced on gray cast iron in situ [J]. Surf. Coat. Technol., 2016, 286: 347
[4] Zhong L S, Zhang X, Chen S L, et al. Fe-W-C thermodynamics and in situ preparation of tungsten carbide-reinforced iron-based surface composites by solid-phase diffusion [J]. Int. J. Refract. Met. Hard Mater., 2016, 57: 42
[5] Song Q S, Xu Q, Xu L, et al. Synthesis of Ni-TiC composite powder electrochemically in molten chlorides [J]. J. Alloys Compd., 2017, 690: 116
[6] Zhao X B, Zhuo Y G, Liu S, et al. Investigation on WC/TiC interface relationship in wear-resistant coating by first-principles [J]. Surf. Coat. Technol., 2016, 305: 200
[7] Chen L Q, Guo J H, Wang J J, et al. Tensile deformation and fracture behavior of AZ91D magnesium alloy and TiC/Mg magnesium matrix composites synthesized by in situ reactive infiltration technique [J]. Rare Met. Mater. Eng., 2006, 35: 29
[7] (陈礼清, 郭金花, 王继杰等. 原位反应自发渗透法TiC/AZ91D镁基复合材料及AZ91D镁合金的拉伸变形与断裂行为 [J]. 稀有金属材料与工程, 2006, 35: 29)
[8] Andrieux J, Gardiola B, Dezellus O. Synthesis of Ti matrix composites reinforced with TiC particles: in situ synchrotron X-ray diffraction and modeling [J]. J. Mater. Sci., 2018, 53: 9533
[9] Sun X L, Han Y F, Cao S H, et al. Rapid in-situ reaction synthesis of novel TiC and carbon nanotubes reinforced titanium matrix composites [J]. J. Mater. Sci. Technol., 2017, 33: 1165
[10] Song M S, Zhang J, Li Y, et al. Investigation of Al-matrix composites reinforced by TiC particulates synthesized from melt and corresponding properties [J]. Hot Working Technol., 2017, 46(20): 116
[10] (宋谋胜, 张 杰, 李 勇等. 熔体内合成TiC颗粒增强Al基复合材料及其性能研究 [J]. 热加工工艺, 2017, 46(20): 116)
[11] Li Y Y, Ni K Y, Zhu F W. Study of TiC particle-reinforced Cu matrix composites [J]. Powder Metall. Technol., 2018, 36: 106
[11] (李月英, 倪慨宇, 祝夫文. TiC颗粒增强铜基复合材料的研究 [J]. 粉末冶金技术, 2018, 36: 106)
[12] Ma S B, Xia Z W, Xu Y, et al. Microstructure and abrasion resistance of in-situ TiC particles reinforced Ni-based composite coatings by laser cladding [J]. J. Mater. Eng., 2017, 45(6): 24
[12] (马世榜, 夏振伟, 徐 杨等. 激光熔覆原位自生TiC颗粒增强镍基复合涂层的组织与耐磨性 [J]. 材料工程, 2017, 45(6): 24)
[13] Ni Z F, Sun Y S, Xue F, et al. Microstructure and properties of austenitic stainless steel reinforced with in situ TiC particulate [J]. Mater. Des., 2011, 32: 1462
[14] Akhtar F, Guo S J. Microstructure, mechanical and fretting wear properties of TiC-stainless steel composites [J]. Mater. Charact., 2008, 59: 84
[15] Almangour B, Grzesiak D, Yang J M. In situ formation of TiC-particle-reinforced stainless steel matrix nanocomposites during ball milling: Feedstock powder preparation for selective laser melting at various energy densities [J]. Powder Technol., 2018, 326: 467
[16] Ni Z F, Sun Y S, Xue F, et al. Evaluation of electroslag remelting in TiC particle reinforced 304 stainless steel [J]. Mater. Sci. Eng., 2011, A528: 5664
[17] Tang H Q, Su G C, Zhan Y Z, et al. Microstructure characterisation of insitu TiC particulates reinforced Fe-based composites [J]. Mater. Res. Innovations, 2015, 19(Suppl.): S5-152
[18] Zhong L S, Xu Y H, Hojamberdiev M, et al. In situ fabrication of titanium carbide particulates-reinforced iron matrix composites [J]. Mater. Des., 2011, 32: 3790
[19] Sharifitabar M, Khaki J V, Sabzevar M H. Microstructure and wear resistance of in-situ TiC-Al2O3 particles reinforced Fe-based coatings produced by gas tungsten arc cladding [J]. Surf. Coat. Technol., 2016, 285: 47
[20] Liu X Y, Zheng K H, Luo T G, et al. Three body abrasive wear properties of in-situ TiC iron matrix composites [J]. Foundry Technol., 2018, 39: 976
[20] (刘相熠, 郑开宏, 罗铁钢等. 自生TiC铁基复合材料的三体磨料磨损性能的工艺探究 [J]. 铸造技术, 2018, 39: 976)
[21] Zhong L S, Ye F X, Xu Y H, et al. Microstructure and abrasive wear characteristics of in situ vanadium carbide particulate-reinforced iron matrix composites [J]. Mater. Des., 2014, 54: 564
[22] Peng J H, Dong H L, Hojamberdiev M, et al. Improving the mechanical properties of tantalum carbide particle-reinforced iron-based composite by varying the TaC contents [J]. J. Alloys Compd., 2017, 726: 896
[23] Ding Y C, Wang Y S, Wang J, et al. Structure and properties of V8C7 matrix composite fabricated in-situ [J]. J. Sichuan Univ. (Eng. Sci. Ed.), 2007, 39(4): 113
[23] (丁义超, 王一三, 王静等. 原位合成V8C7颗粒增强铁基复合材料的结构和性能 [J]. 四川大学学报(工程科学版), 2007, 39(4): 113)
[24] Wang Z, Lin T, He X B, et al. Microstructure and properties of TiC-high manganese steel cermet prepared by different sintering processes [J]. J. Alloys Compd., 2015, 650: 918
[25] Bikerman J J. Ploughing and adhesion of sliding metals [J]. J. Appl. Phys., 1943, 14: 436
[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[3] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[5] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[6] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[9] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[10] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[11] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[12] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[13] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[14] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.
[15] 王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.