Please wait a minute...
金属学报  2018, Vol. 54 Issue (11): 1637-1652    DOI: 10.11900/0412.1961.2018.00371
  材料与工艺 本期目录 | 过刊浏览 |
铸造高温合金研发中的应用基础研究
张健(), 楼琅洪
中国科学院金属研究所 沈阳 110016
Basic Research in Development and Applicationof Cast Superalloy
Jian ZHANG(), Langhong LOU
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

张健, 楼琅洪. 铸造高温合金研发中的应用基础研究[J]. 金属学报, 2018, 54(11): 1637-1652.
Jian ZHANG, Langhong LOU. Basic Research in Development and Applicationof Cast Superalloy[J]. Acta Metall Sin, 2018, 54(11): 1637-1652.

全文: PDF(5240 KB)   HTML
摘要: 

铸造高温合金应用于制造航空、航天、能源等领域高端装备的核心热部件,其研发涉及多种材料、多个学科,先进铸造高温合金材料的应用水平(技术成熟度)也是国家工业基础的重要体现。近年来在需求牵引下,我国铸造高温合金材料和精密铸件的研发取得了显著进展,但也在工程应用中不断暴露问题,技术成熟度偏低,与国际先进水平仍有较大差距。本文结合近年来本课题组承担的材料及铸件研制任务,从先进定向和单晶高温合金材料研制、复杂铸件研制、叶片的服役行为等方面,介绍了相关应用基础研究在高温合金研制任务中发挥的重要作用。

关键词 铸造高温合金叶片基础研究    
Abstract

Cast superalloy is widely used in aerospace and energy industry. The research and development of these alloys is correlated with a large variety of materials and disciplines. The technology readiness level (TRL) of advanced cast superalloys is generally a mirror of the industry base of a country. China has made great progress in the field under the strong pull of demand in recent years. However, many issues are emerging in the industrial applications, reflecting a low TRL of advanced materials and a large gap between China and the developed countries. We present (1) development of directionally solidified and single crystal superalloys, (2) processing techniques of complex castings and (3) service behavior of blades as examples in this paper to explain the important role of basic research in research and development of cast superalloys.

Key wordscast superalloy    blade    basic research
收稿日期: 2018-08-16     
ZTFLH:  TG24  
基金资助:国家自然科学基金项目Nos.51631008、51201164、51671196、50901079、51771204和U1732131,国家重点基础研究发展计划项目No.2010CB631201,国家重点研发计划项目Nos.2017YFB0702904和2016YFB0701403
作者简介:

作者简介 张 健,男,1972年生,研究员,博士

图1  铸造高温合金的研制流程
图2  Re对单晶高温合金高温热腐蚀性能的影响[9]
图3  DZ411合金900 ℃、24000 h长期时效中的组织演化及其对持久寿命的影响[18]
图4  DZ411和DD410合金的L-M曲线
图5  第三代单晶高温合金DD33在固溶热处理中显微孔洞的演化[26]
图6  含倾侧/扭转晶界的DD410合金在760 ℃下的横向持久性能[35]
图7  定向和单晶高温合金归一化持久寿命随横向再结晶面积分数的变化[43,52,53,55~60]
图8  整体细晶叶盘和整体双性能叶盘的晶粒组织
图9  不同尺寸叶片的冷却曲线模拟结果与实验结果的对比分析[89]
图10  长时服役叶片的显微组织和涂层
图11  第二取向对单晶合金热疲劳性能的影响[111]
[1] Cahn R W.The Coming of Materials Science [M]. Amsterdam: Pergamon Press, 2001: 352
[2] Schafrik R E.Materials for a non-steady-state world[J]. Metall. Mater. Trans., 2016, 47B: 1505
[3] Reed R C, Moverare J J, Sato A, et al.A new single crystal superalloy for power generation applications [A]. Superalloys 2012: 12th International Symposium on Superalloys[C]. Warrendale, PA: TMS, 2012: 197
[4] Mottura A, Warnken N, Miller M K, et al.Atom probe tomography analysis of the distribution of rhenium in nickel alloys[J]. Acta Mater., 2010, 58: 931
[5] Ding Q Q, Li S Z, Chen L Q, et al.Re segregation at interfacial dislocation network in a nickel-based superalloy[J]. Acta Mater., 2018, 154: 137
[6] Tang Y L, Huang M, Xiong J C, et al.Evolution of superdislocation structures during tertiary creep of a nickel-based single-crystal superalloy at high temperature and low stress[J]. Acta Mater., 2017, 126: 336
[7] Reed R C, Mottura A, Crudden D J.Alloys-by-design: Towards optimization of compositions of nickel-based superalloys [A]. Superalloys 2016: Proceedings of the 13th International Symposium on Superalloys[C]. Warrendale, PA: TMS, 2016: 15
[8] Stewart C A, Rhein R K, Suzuki A, et al.Oxide scale formation in novel γ-γ' cobalt-based alloys [A]. Superalloys 2016: Proceedings of the 13th International Symposium on Superalloys[C]. Warrendale, PA: TMS, 2016: 991
[9] Chang J X, Wang D, Zhang G, et al.Effect of Re and Ta on hot corrosion resistance of nickel-base single crystal superalloys [A]. Superalloys 2016: Proceedings of the 13th International Symposium on Superalloys[C]. Warrendale, PA: TMS, 2016: 177
[10] Chang J X, Wang D, Liu X G, et al.Effect of rhenium addition on hot corrosion resistance of Ni-based single crystal superalloys[J]. Metall. Mater. Trans., 2018, 49A: 4343
[11] Chang J X, Wang D, Liu T, et al.Role of tantalum in the hot corrosion of a Ni-base single crystal superalloy[J]. Corros. Sci., 2015, 98: 585
[12] Chang J X, Wang D, Zhang G, et al.Interaction of Ta and Cr on Type-I hot corrosion resistance of single crystal Ni-base superalloys[J]. Corros. Sci., 2017, 117: 35
[13] Campbell C E, Boettinger W J, Kattner U R.Development of a diffusion mobility database for Ni-base superalloys[J]. Acta Mater., 2002, 50: 775
[14] Sarioglu C, Stinner C, Blachere J R, et al.The control of sulfur content in nickel-base single crystal superalloys and its effects on cyclic oxidation resistance [A]. Superalloys 1996: Proceedings of the Eighth International Symposium on Superalloys[C]. Warrendale, PA: TMS, 1996: 71
[15] Reed R C.The Superalloys: Fundamentals and Applications [M]. Cambridge, New York: Cambridge University Press, 2006: 172
[16] Seth B B.Superalloys-the utility gas turbine perspective [A]. Superalloys 2000: Proceedings of the Ninth International Symposium on Superalloys[C]. Warrendale, PA: TMS, 2000: 3
[17] Li H, Wang L, Lou L H.Dendritic coarsening of γ' phase in a directionally solidified superalloy during 24,000 h of exposure at 1173 K[J]. Mater. Charact., 2010, 61: 502
[18] Jiang X W, Wang D, Xie G, et al.The effect of long-term thermal exposure on the microstructure and stress rupture property of a directionally solidified Ni-based superalloy[J]. Metall. Mater. Trans., 2014, 45A: 6016
[19] Zhang H W, Qin X Z, Wu Y S, et al.Effects of Cr content on the microstructure and stress rupture property of a directionally solidified Ni-based superalloy during long-term thermal exposure[J]. Mater. Sci. Eng., 2018, A718: 449
[20] Pal J, Srinivasan D, Cheng E.Effect of rejuvenation heat treatment and aging on the microstructural evolution in Rene N5 single crystal Ni base superalloy blades [A]. Superalloys 2016: Proceedings of the 13th International Symposium on Superalloys[C]. Warrendale, PA: TMS, 2016: 285
[21] Yao Z, Degnan C C, Jepson M A E, et al. Effect of rejuvenation heat treatments on gamma prime distributions in a Ni based superalloy for power plant applications[J]. Mater. Sci. Technol., 2013, 29: 775
[22] Qin X Z, Guo J T, Yuan C, et al.Effects of long-term thermal exposure on the microstructure and properties of a cast Ni-base superalloy[J]. Metall. Mater. Trans., 2007, 38A: 3014
[23] Jiang X W, Wang D, Wang D, et al.The effect of reheat treatment on microstructure and stress rupture property of a directionally solidified nickel-based superalloy after long-term thermal exposure[J]. Mater. Sci. Eng., 2017, A694: 48
[24] Huang Q Y, Li H K.Superalloy [M]. Beijing: Metallurgical Industry Press, 2000: 385(黄乾尧, 李汉康. 高温合金[M]. 北京: 冶金工业出版社, 2000: 385)
[25] Koizumi Y, Harada H, Kobayashi T, et al.Long-term creep property of a second-generation nickel-base single-crystal superalloy, TMS82+[J]. J. Jpn. Inst. Met., 2005, 69: 743
[26] Li X W, Wang L, Dong J S, et al.Evolution of micro-pores in a single-crystal nickel-based superalloy during solution heat treatment[J]. Metall. Mater. Trans., 2017, 48A: 2682
[27] Wan J S, Yue Z F, Lu Z Z.Casting microporosity growth in single-crystal superalloys by a three-dimensional unit cell analysis[J]. Modell. Simul. Mater. Sci. Eng., 2005, 13: 875
[28] Le Graverend J B, Adrien J, Cormier J. Ex-situ X-ray tomography characterization of porosity during high-temperature creep in a Ni-based single-crystal superalloy: Toward understanding what is damage[J]. Mater Sci Eng., 2017, A695: 367
[29] Chen Q Z, Kong Y H, Jones C N, et al.Porosity reduction by minor additions in RR2086 superalloy[J]. Scr. Mater., 2004, 51: 155
[30] Shi Q Y, Li X H, Zheng Y R, et al.Formation of solidification and homogenisation micropores in two single crystal superalloys produced by HRS and LMC processes[J]. Acta Metall. Sin., 2012, 48: 1237(石倩颖, 李相辉, 郑运荣等. HRS和LMC工艺制备的两种镍基单晶高温合金铸态及固溶微孔的形成[J]. 金属学报, 2012, 48: 1237)
[31] Matuszewski K, Matysiak H, Jaroszewicz J, et al.Influence of Bridgman process conditions on microstructure and porosity of single crystal Ni-base superalloy CMSX-4[J]. Int. J. Cast. Met. Res., 2014, 27: 329
[32] Liu L, Husseini N S, Torbet C J, et al.In situ synchrotron X-ray imaging of high-cycle fatigue crack propagation in single-crystal nickel-base alloys[J]. Acta Mater., 2011, 59: 5103
[33] Li J R, Zhao J Q, Liu S Z, et al.Effects of low angle boundaries on the mechanical properties of single crystal superalloy DD6 [A]. Superalloys 2008: Proceedings of the 11th International Symposium on Superalloys[C]. Warrendale, PA: TMS, 2008: 443
[34] Chen Q Z, Jones C N, Knowles D M.The grain boundary microstructures of the base and modified RR 2072 bicrystal superalloys and their effects on the creep properties[J]. Mater. Sci. Eng., 2004, A385: 402
[35] Wang Y, Wang D, Zhang G, et al.Characterization of tilt and twist low angle grain boundaries and their effects on intermediate-temperature creep deformation behaviour [A]. Superalloys 2016: Proceedings of the 13th International Symposium on Superalloys[C]. Warrendale, PA: TMS, 2016: 757
[36] Ross E W, O'Hara K S. René N4: A first generation single crystal turbine airfoil alloy with improved oxidation resistance, low angle boundary strength and superior long time rupture strength [A]. Superalloys 1996: Proceedings of the Eighth International Symposium on Superalloys[C]. Warrendale, PA: TMS, 1996: 19
[37] Shah D M, Cetel A.Evaluation of PWA1483 for large single crystal IGT blade applications [A]. Superalloys 2000: Proceedings of the Ninth International Symposium on Superalloys[C]. Warrendale, PA: TMS, 2000: 295
[38] Zhao Y S, Zhao Y S, Zhang J, et al.Effect of Hf and B on transverse and longitudinal creep of a Re-containing nickel-base bicrystal superalloy [A]. Superalloys 2016: Proceedings of the 13th Intenational Symposium of Superalloys[C]. Warrendale, PA: TMS, 2016: 683
[39] Stinville J C, Gallup K, Pollock T M.Transverse creep of nickel-base superalloy bicrystals[J]. Metall. Mater. Trans., 2015, 46A: 2516
[40] Shu Y F, Zhu J X, Zhang J, et al.Back reflection structure digital X-ray crystal orientation device and X-ray detector thereof [P]. Chin Pat, 201510998096.X, 2016(舒岩峰, 朱锦霞, 张健等. 背反射结构数字化X射线晶体定向仪及其X射线探测器 [P]. 中国专利, 201510998096.X, 2016)
[41] Tao C H, Zhang W F, Shi H J, et al.Recrystallization of Directionally Solidified Superalloy [M]. Beijing: National Defense Industry Press, 2007: 187(陶春虎, 张卫方, 施惠基等. 定向凝固高温合金的再结晶 [M]. 北京: 国防工业出版社, 2007: 187)
[42] B?rgel R, Portella P D, Preuhs J.Recrystallization in single crystals of nickel base superalloys [A]. Superalloys 2000: Proceedings of the Ninth International Symposium on Superalloys[C]. Warrendale: TMS, 2000: 229
[43] Sun Z G.Recrystallization behaviour of Ni-base superalloy DZ17G [D]. Shenyang: Northeastern University, 2007(孙志国. DZ17G镍基高温合金再结晶行为研究 [D]. 沈阳: 东北大学, 2007)
[44] Wang L, Pyczak F, Zhang J, et al.Effect of eutectics on plastic deformation and subsequent recrystallization in the single crystal nickel base superalloy CMSX-4[J]. Mater. Sci. Eng., 2012, A532: 487
[45] Wang L, Xie G, Zhang J, et al.On the role of carbides during the recrystallization of a directionally solidified nickel-base superalloy[J]. Scr. Mater., 2006, 55: 457
[46] Wang L, Xie G, Lou L H.Effect of carbon content on the recrystallization of a single crystal nickel-based superalloy[J]. Mater. Lett., 2013, 109: 154
[47] Mathur H N, Panwisawas C, Jones C N, et al.Nucleation of recrystallisation in castings of single crystal Ni-based superalloys[J]. Acta Mater., 2017, 129: 112
[48] Xie G, Zhang J, Lou L H.Effect of heat treatment atmosphere on surface recrystallization of a directionally solidified Ni-base superalloy[J]. Scr. Mater., 2008, 59: 858
[49] Xie G, Wang L, Zhang J, et al.Orientational dependence of recrystallization in an Ni-base single-crystal superalloy[J]. Scr. Mater., 2012, 66: 378
[50] Zambaldi C, Roters F, Raabe D, et al. Modeling and experiments on the indentation deformation and recrystallization of a single-crystal nickel-base superalloy [J]. Mater. Sci. Eng., 2007, A454-455: 433
[51] Pu S, Xie G, Zheng W, et al.Effect of W and Re on deformation and recrystallization of solution heat treated Ni-based single crystal superalloys[J]. Acta Metall. Sin., 2015, 51: 239(濮晟, 谢光, 郑伟等. W和Re元素对固溶态镍基单晶高温合金变形和再结晶的影响[J]. 金属学报, 2015, 51: 239)
[52] Xie G, Wang L, Zhang J, et al.Influence of recrystallization on the high-temperature properties of a directionally solidified Ni-base superalloy[J]. Metall. Mater. Trans., 2008, 39A: 206
[53] Xie G, Wang L, Zhang J, et al.Intermediate temperature creep of directionally solidified Ni-based superalloy containing local recrystallization[J]. Mater. Sci. Eng., 2011, A528: 3062
[54] Xie G, Wang L, Zhang J, et al.High temperature creep of directionally solidified Ni base superalloys containing local recrystallization [A]. Superalloys 2008: Proceedings of the 11th International Symposium on Superalloys[C]. Warrendale: TMS, 2008: 453
[55] Zheng Y R, Ruan Z C, Wang S C.Effect of surface recrystallization on the endurance strength of DZ22[J]. Acta Metall. Sin., 1995, 31(suppl.): 325(郑运荣, 阮中慈, 王顺才. DZ22合金的表层再结晶及其对持久性能的影响[J]. 金属学报, 1995, 31(增刊): 325)
[56] Khan T, Caron P, Nakagawa Y G.Mechanical behavior and processing of DS and single crystal superalloys[J]. JOM, 1986, 38(7): 16
[57] Wang D L.Recrystallization of several Ni-base superalloys [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2006(王东林. 几种镍基高温合金再结晶问题的研究 [D]. 沈阳: 中国科学院金属研究所, 2006)
[58] Meng J, Jin T, Sun X F, et al.Effect of surface recrystallization on the creep rupture properties of a nickel-base single crystal superalloy[J]. Mater. Sci. Eng., 2010, A527: 6119
[59] Zhang B, Lu X, Liu D L, et al.Influence of recrystallization on high-temperature stress rupture property and fracture behavior of single crystal superalloy[J]. Mater. Sci. Eng., 2012, A551: 149
[60] Shi Z X, Liu S Z, Wang X G, et al.Effects of heat treatment on surface recrystallization and stress rupture properties of a fourth-generation single-crystal superalloy after grit blasting[J]. Acta Metall. Sin.(Engl. Lett.), 2017, 30: 614
[61] Ma X, Shi H J, Gu J, et al.Influence of surface recrystallization on the low cycle fatigue behaviour of a single crystal superalloy[J]. Fatigue Fract. Eng. Mater. Struct., 2015, 38: 340
[62] Okazaki M, Hiura T, Suzuki T.Effect of local cellular transformation on fatigue small crack growth in CMSX-4 and CMSX-2 at high temperature [A]. Superalloys 2000: Proceedings of the Ninth International Symposium on Superalloys[C]. Warrendale: TMS, 2000: 505
[63] Goodlet B R, Rettberg L H, Pollock T M.Resonant ultrasound spectroscopy for defect detection in single crystal superalloy castings [A]. Superalloys 2016: Proceedings of the 13th International Symposium on Superalloys[C]. Warrendale, PA: TMS, 2016: 303
[64] Panwisawas C, Mathur H, Gebelin J C, et al.Prediction of recrystallization in investment cast single-crystal superalloys[J]. Acta Mater., 2013, 61(1): 51
[65] Corrigan J, Vogt R G, Mihalisin J R.Single crystal superalloy articles with reduced grain recrystallization [P]. Europe Pat, EP 1038982A1, 2000
[66] Salkeld R W, Field T T, Ault E A.Preparation of single crystal superalloys for post-casting heat treatment [P]. US Pat, 5413648, 1995
[67] Xie G, Zhang J, Lou L H.Effect of cyclic recovery heat treatment on surface recrystallization of a directionally solidified superalloy[J]. Prog. Nat. Sci. Mater. Int., 2011, 21: 491
[68] Bhaumik S K, Bhaskaran T A, Rangaraju R, et al.Failure of turbine rotor blisk of an aircraft engine[J]. Eng. Fail. Anal., 2002, 9: 287
[69] Liu L, Huang T W, Xiong Y H, et al.Grain refinement of superalloy K4169 by addition of refiners: Cast structure and refinement mechanisms[J]. Mater. Sci. Eng., 2005, A394: 1
[70] Yin F S, Sun X F, Li J G, et al.Effects of melt treatment on the cast structure of M963 superalloy[J]. Scr. Mater., 2003, 48: 425
[71] Brinegar J R, Chamberlain K R, Vresics J J, et al.Method of forming a fine-grained equiaxed casting [P]. US Pat, 4832112, 1989
[72] Li X, Gagnoud A, Fautrelle Y, et al.Dendrite fragmentation and columnar-to-equiaxed transition during directional solidification at lower growth speed under a strong magnetic field[J]. Acta Mater., 2012, 60: 3321
[73] Feng X H, Yang Y S.Numerical modeling of crystal growth of a nickel-based superalloy with applied direct current[J]. J. Cryst. Growth, 2011, 334: 170
[74] Ma X P, Li Y J, Yang Y S.Grain refinement effect of a pulsed magnetic field on as-cast superalloy K417[J]. J. Mater. Res., 2009, 24: 2670
[75] Flemings M C.Behavior of metal alloys in the semisolid state[J]. Metall. Mater. Trans., 1991, 22A: 957.
[76] Fan Z.Semisolid metal processing[J]. Int. Mater. Rev., 2002, 47: 49
[77] Pollock T M, Murphy W H, Goldman E H, et al.Grain defect formation during directional solidification of nickel base single crystals [A]. Superalloys 1992: Proceedings of the Eighth International Symposium on Superalloys[C]. Warrendale, PA: TMS, 1992: 125
[78] Shi Z X, Liu S Z, Li J R.Sliver formation mechanism of single crystal superalloy during directional solidification proscess[J]. Hot Working Technol., 2013, 42(13): 31(史振学, 刘世忠, 李嘉荣. 单晶高温合金定向凝固过程中条带的形成机制[J]. 热加工工艺, 2013, 42(13): 31)
[79] Aveson J W, Tennant P A, Foss B J, et al.On the origin of sliver defects in single crystal investment castings[J]. Acta Mater., 2013, 61: 5162
[80] Ruvalcaba D, Mathiesen R H, Eskin D G, et al.In situ observations of dendritic fragmentation due to local solute-enrichment during directional solidification of an aluminum alloy[J]. Acta Mater., 2007, 55: 4287
[81] Aveson J W.Studying flow effects on dendrite fragmentation using Rayleigh-Bénard convection[J]. Mater. Sci. Technol., 2012, 28: 1014
[82] Van Hoose J R, Grugel R N, Tewari S N, et al. Observation of misoriented tertiary dendrite arms during controlled directional solidification in aluminum-7 Wt pct silicon alloys[J]. Metall. Mater. Trans., 2012, 43A: 4724
[83] Zhang J, Lou L H.Directional solidification assisted by liquid metal cooling[J]. J. Mater. Sci. Technol., 2007, 23: 289
[84] Liu L, Sun D J, Huang T W, et al.Directional solidification under high thermal gradient and its application in superalloys processing[J]. Acta Metall. Sin., 2018, 54: 615(刘林, 孙德建, 黄太文等. 高梯度定向凝固技术及其在高温合金制备中的应用[J]. 金属学报, 2018, 54: 615)
[85] Elliott A J, Pollock M T, Tin S, et al.Directional solidification of large superalloy castings with radiation and liquid-metal cooling: A comparative assessment[J]. Metall. Mater. Trans., 2004, 35A: 3221
[86] Liu C, Li K W, Shen J, et al.Improved castability of directionally solidified, Ni-based superalloy by the liquid metal cooling process[J]. Metall. Mater. Trans., 2012, 43A: 405
[87] Elliott A J, Karney G B, Gigliotti M F X, et al. Issues in processing by the liquid-Sn assisted directional solidification technique [A]. Superalloys 2004: Proceedings of the 10th International Symposium on Superalloys[C]. Warrendale, PA: TMS, 2004: 421
[88] Lohmüeller A, E?er W, Go?mann J, et al.Improved quality and economics of investment castings by liquid metal cooling—The selection of cooling media [A]. Superalloys 2000: Proceedings of the Ninth International Symposium on Superalloys[C]. Warrendale, PA: TMS, 2000: 181
[89] Shen J, Xu Z G, Lu Y Z, et al.Reaction of Ni-based superalloy with liquid Sn during liquid-metal-cooled directional solidification[J]. Metall. Mater. Trans., 2018, 49A: 4003
[90] Tao C H.Failure Analysis and Prevention for Rotor in Aero-Engine [M]. Beijing: National Defense Industry Press, 2000: 6(陶春虎. 航空发动机转动部件的失效与预防 [M]. 北京: 国防工业出版社, 2000: 6)
[91] Carter T J.Common failures in gas turbine blades[J]. Eng. Fail. Anal., 2005, 12: 237
[92] Lee H S, Yoo K B, Kim D S, et al.Degradation of thermal barrier coated superalloy component during service[J]. J. Fail. Anal. Prev., 2007, 7: 250
[93] Liburdi J, Lowden P, Nagy D, et al.Practical experience with the development of superalloy rejuvenation [A]. The ASME Turbo Expo[C]. New York: ASME, 2009: 1
[94] Viswanathan R, Dolbec A C.Life assessment technology for combustion turbine blade[J]. J. Eng. Gas Turbines Power, 1987, 109: 115
[95] Stevens R A, Flewitt P E J. The dependence of creep rate on microstructure in a γ' strengthened superalloy[J]. Acta Metall., 1981, 29: 867
[96] Sun E, Heffernan T, Helmink R.Stress rupture and fatigue in thin wall single crystal superalloys with cooling holes [A]. Superalloys 2012: Proceedings of the 12th International Symposium on Superalloys[C]. Warrendale, PA: TMS, 2012: 353
[97] Srivastava A, Gopagoni S, Needleman A, et al.Effect of specimen thickness on the creep response of a Ni-based single-crystal superalloy[J]. Acta Mater., 2012, 60: 5697
[98] Seetharaman V, Cetel A D.Thickness debit in creep properties of PWA 1484 [A]. Superalloys 2004: Proceedings of the 10th International Symposium on Superalloys[C]. Warrendale, PA: TMS, 2004: 207
[99] Dryepondt S, Monceau D, Crabos F, et al.Static and dynamic aspects of coupling between creep behavior and oxidation on MC2 single crystal superalloy at 1150 ℃[J]. Acta Mater., 2005, 53: 4199
[100] Stowell E Z.Stress and strain concentration at a circular hole in an infinite plate [R]. Washington: National Advisory Committee for Aeronautics, 1950
[101] Yu Q M, Yue Z F, Wen Z X.Creep damage evolution in a modeling specimen of nickel-based single crystal superalloys air-cooled blades[J]. Mater. Sci. Eng., 2008, A477: 319
[102] Zhang Y Y, Qiu W H, Shi H J, et al.Effects of secondary orientations on long fatigue crack growth in a single crystal superalloy[J]. Eng. Fract. Mech., 2015, 136: 172
[103] Suzuki S, Sakaguchi M, Inoue H.Temperature dependent fatigue crack propagation in a single crystal Ni-base superalloy affected by primary and secondary orientations[J]. Mater. Sci. Eng., 2018, A724: 559
[104] Latief F H, Kakehi K, Murakami H.Anisotropic creep properties of aluminized Ni-based single-crystal superalloy at intermediate and high temperatures[J]. Scr. Mater., 2013, 68: 126
[105] Latief F H, Kakehi K, Sherif E S M. High temperature oxidation behavior of aluminide on a Ni-based single crystal superalloy in different surface orientations[J]. Prog. Nat. Sci. Mater. Int., 2014, 24: 163
[106] Wen Z X, Mao H Z, Yue Z F, et al.The Influence of crystal orientation on vibration characteristics of DD6 nickel-base single crystal superalloy turbine blade[J]. J. Mater. Eng. Perform., 2014, 23: 372
[107] Zhou Z J, Wang L, Wang D, et al.Effect of secondary orientation on room temperature tensile behaviors of Ni-base single crystal superalloys[J]. Mater. Sci. Eng., 2016, A659: 130
[108] Zhou Z J, Liu T, Pu S, et al.Effect of holes on the room temperature tensile behaviors of thin wall specimens with (210) side surface of Ni-base single crystal superalloy[J]. J. Alloys Compd., 2015, 647: 802
[109] Kakehi K.Effect of plastic anisotropy on tensile strength of single crystals of an Ni-based superalloy[J]. Scr. Mater., 1999, 42: 197
[110] Zhou Z J, Wang L, Wen J L, et al.Effect of skew angle of holes on the tensile behavior of a Ni-base single crystal superalloy[J]. J. Alloys Compd., 2015, 628: 158
[111] Wang L, Zhou Z J, Zhang S H, et al.Crack initiation and propagation around holes of Ni-based single crystal superalloy during thermal fatigue cycle[J]. Acta Metall. Sin., 2015, 51: 1273(王莉, 周忠娇, 张少华等. 镍基单晶高温合金冷热循环过程中圆孔周围裂纹萌生与扩展行为[J]. 金属学报, 2015, 51: 1273)
[112] Zhou Z J, Yu D Q, Wang L, et al.Effect of skew angle of holes on the thermal fatigue behavior of a Ni-based single crystal superalloy[J]. Acta Metall. Sin.(Engl. Lett.), 2017, 30: 185
[1] 马德新, 赵运兴, 徐维台, 皮立波, 李重行. 高温合金单晶铸件中共晶组织分布的表面效应[J]. 金属学报, 2021, 57(12): 1539-1548.
[2] 马德新,王富,徐维台,徐文梁,赵运兴. 高温合金单晶铸件中条纹晶的形成机制[J]. 金属学报, 2020, 56(3): 301-310.
[3] 郭小童, 郑为为, 李龙飞, 冯强. 冷却速率导致的薄壁效应对K465合金显微组织和持久性能的影响[J]. 金属学报, 2020, 56(12): 1654-1666.
[4] 张军,介子奇,黄太文,杨文超,刘林,傅恒志. 镍基铸造高温合金等轴晶凝固成形技术的研究和进展[J]. 金属学报, 2019, 55(9): 1145-1159.
[5] 许庆彦,杨聪,闫学伟,柳百成. 高温合金涡轮叶片定向凝固过程数值模拟研究进展[J]. 金属学报, 2019, 55(9): 1175-1184.
[6] 谢光, 张少华, 郑伟, 张功, 申健, 卢玉章, 郝红全, 王莉, 楼琅洪, 张健. 大尺寸单晶叶片中小角度晶界的形成与演化[J]. 金属学报, 2019, 55(12): 1527-1536.
[7] 陈亚东, 郑运荣, 冯强. 基于微观组织演变的DZ125定向凝固高压涡轮叶片服役温度场的评估方法研究*[J]. 金属学报, 2016, 52(12): 1545-1556.
[8] 唐宁, 王艳丽, 许庆彦, 赵希宏, 柳百成. 宽弦航空叶片Bridgeman定向凝固组织数值模拟[J]. 金属学报, 2015, 51(4): 499-512.
[9] 童锦艳,冯微,付超,郑运荣,冯强. GH4033合金短时超温后的显微组织损伤及力学性能[J]. 金属学报, 2015, 51(10): 1242-1252.
[10] 马德新. 高温合金叶片单晶凝固技术的新发展[J]. 金属学报, 2015, 51(10): 1179-1190.
[11] 张健 申健 卢玉章 楼琅洪. 燃气轮机用大型定向结晶铸件制备及组织与性能研究[J]. 金属学报, 2010, 46(11): 1322-1326.
[12] 崔锴; 许庆彦; 于靖; 柳百成; 木间明彦;黑木康德;横山文彦 . 高温合金叶片定向凝固过程中辐射换热的计算[J]. 金属学报, 2007, 43(5): 465-471 .
[13] 于靖; 许庆彦; 李嘉荣; 袁海龙; 刘世忠; 柳百成 . 镍基高温合金多叶片定向凝固过程数值模拟[J]. 金属学报, 2007, 43(10): 1113-1120 .
[14] 李友林; 袁超; 郭建亭 . 铸造镍基高温合金K445的热疲劳行为[J]. 金属学报, 2006, 42(10): 1056-1060 .
[15] 呼和 . 镍基铸造高温合金的热等静压处理[J]. 金属学报, 2002, 38(11): 1199-1202 .