Please wait a minute...
金属学报  2018, Vol. 54 Issue (11): 1490-1502    DOI: 10.11900/0412.1961.2018.00357
  组织与结构 本期目录 | 过刊浏览 |
一类介于晶体与准晶体之间的有序结构
秦高梧(), 谢红波, 潘虎成, 任玉平
东北大学材料科学与工程学院材料各向异性与织构教育部重点实验室 沈阳 110819
A New Class of Ordered Structure Between Crystals and Quasicrystals
Gaowu QIN(), Hongbo XIE, Hucheng PAN, Yuping REN
Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
引用本文:

秦高梧, 谢红波, 潘虎成, 任玉平. 一类介于晶体与准晶体之间的有序结构[J]. 金属学报, 2018, 54(11): 1490-1502.
Gaowu QIN, Hongbo XIE, Hucheng PAN, Yuping REN. A New Class of Ordered Structure Between Crystals and Quasicrystals[J]. Acta Metall Sin, 2018, 54(11): 1490-1502.

全文: PDF(10545 KB)   HTML
摘要: 

本文简要介绍了固态物质结构研究的发展历程,并着重介绍了作者课题组最近在凝聚态结构物质上的新发现。(1) 与传统的Laves结构不同,等温时效析出的(Mg, In)2Ca “Laves相”包含2种晶胞单元,这2种单胞沿6个特定的方向排列,构成5种拼砌图案,这5种拼砌模型随机键合在一起,形成一个在(0001)L基面长程范围内不具有6次旋转对称的“C14”型Laves相。(2) Mg-Zn二元合金等温时效析出的纳米棒状相是由2种最小结构单元,即72°菱形结构单元(MgZn2)和72°等边六边形结构单元(MgZn),沿5个方向自组装而成的一个包含C14、C15等短程有序的Laves晶体相和二维5次旋转对称结构的纳米畴结构。(Mg, In)2Ca Laves相和Mg-Zn 5次纳米畴结构沿法线方向具有周期性的原子排列,然而在法平面上不具有任何平移周期性,是一类既不属于晶体相也不同于任何已发现的准晶体或准晶近似相的二维有序结构。

关键词 晶体准晶近似相Laves相畴结构有序结构    
Abstract

This paper briefly reviews the development and research history of strutures of the solid matters, and highlight two new strcutures of precipitates in Mg alloys found by our group recently. (1) The isothermally aged (Mg, In)2Ca "Laves phase" contains two separate unit cells promoting the formation of five tiling patterns. The bonding of these patterns leads to the generation of the present phase but without any six-fold rotational symmetry in a long-range on the (0001)L basal plane, constrainted by the Penrose geometrical rule, completely different from the known Laves phases. (2) The MgZn five-fold nanodomain structure is self-assembled by two separate unit cells (72° rhombus structure: MgZn2, and 72° equilateral hexagon structure: MgZn) under the Penrose geomotrical constraints, containing 2D five-fold symmetry locally and short-range ordered C14 and C15 Laves structures. These two special structures without any translational symmetry on the normal plane while periodical arrangement along the normal direction, are a new class of intermediate structures between crystals and quasicrystals. And thus, they does not belong to any crystals or 2D ordered structures in quasicrystals or quasicrystal approximants.

Key wordscrystal    quasicrystal    approximants    Laves phase    domain structure    ordered structure
收稿日期: 2018-07-30     
ZTFLH:  TG111.5  
基金资助:国家重点研发计划项目No.2016YFB0701202及国家自然科学基金项目Nos.51371046、51525101、51501032和U1610253
作者简介:

作者简介 秦高梧,男,1970年生,教授,博士

图1  自然界中固态物质占比示意图
图2  非晶合金[1]和晶态金属HRTEM像及其相应的选区电子衍射谱对比
图3  典型Mg-Al-Zn三维二十面体准晶的电子衍射谱、Mg-Al-Zn二十面体准晶的高分辨HAADF-STEM像、Cd-Yb二十面体准晶原子排列模型及Cd-Yb二十面体准晶的三维原子模型(图3a~c电子束沿5次对称轴入射)[31]
图4  二维十边形准晶示意图(可由一个正十边形棱柱体表示,包含平行和垂直于正十边形棱柱体法线方向上的10次和2次轴电子衍射谱)及Al70Mn17Pd13二维十边形准晶的高分辨HAADF-STEM像(电子束沿10次轴方向入射)[32]
图5  利用HAADF-STEM技术沿[010]方向观察到的Al-Cr-Fe-Si合金中的单斜(3/2, 2/1)准晶近似相及其相应的拼砌模型示意图[34]
图6  V-Ni-Si微畴结构的选区电子衍射谱(显示其具有10次对称)及V-Ni-Si微畴结构的HRTEM像(图中每个亮点代表一个二十面体链,显示这个微畴结构是由C相、C14 Laves相等Frank-Kasper相构成的)[23]
图7  3种典型的Laves相结构(a) MgZn2 Laves phase, C14, with a stacking sequence of “…ABAB…”
图8  Mg-1.5In-0.5Ca合金200 ℃等温时效24 h后的HAADF-STEM图及相应的FFT图(电子束沿[0001]α方向入射)[24]
图9  原子尺度的HAADF-STEM像及相应的原子排列模型(电子束沿[0001]α方向入射)[24]
图10  Mg-6Zn合金200 ℃等温时效8 h后(峰时效)的HAADF-STEM像 [25]
图11  Mg-Zn合金中析出的5次纳米畴结构的原子示意图 [25]
[1] Wang W H.The nature and properties of amorphous matter[J]. Prog. Phys., 2013, 33(5): 177(汪卫华. 非晶态物质的本质和特性 [J]. 物理学进展, 2013, 33(5): 177)
[2] Bindi L, Steinhardt P J, Yao N, et al.Natural quasicrystals[J]. Science, 2009, 324: 1306
[3] Shechtman D, Blech I, Gratias D, et al.Metallic phase with long-range orientational order and no translational symmetry[J]. Phys. Rev. Lett., 1984, 53: 1951
[4] Zhang Z, Ye H Q, Kuo K H.A new icosahedral phase with m35 symmetry[J]. Philos. Mag., 1985, 52A: L49
[5] Ohashi W, Spaepen F.Stable Ga-Mg-Zn quasi-periodic crystals with pentagonal dodecahedral solidification morphology[J]. Nature, 1987, 330: 555
[6] Abe E, Tsai A P.Quasicrystal-crystal transformation in Zn-Mg-rare-earth alloys[J]. Phys. Rev. Lett., 1999, 83: 753
[7] Guo J Q, Abe E, Tsai A P.Stable icosahedral quasicrystals in binary Cd-Ca and Cd-Yb systems[J]. Phys. Rev., 2000, 62B: R14605
[8] Tian Y, Huang H, Yuan G Y, et al.Nanoscale icosahedral quasicrystal phase precipitation mechanism during annealing for Mg-Zn-Gd-based alloys[J]. Mater. Lett., 2014, 130: 236
[9] Wang N, Chen H, Kuo K H.Two-dimensional quasicrystal with eightfold rotational symmetry[J]. Phys. Rev. Lett., 1987, 59: 1010
[10] Cao W, Ye H Q, Kuo K H.A new octagonal quasicrystal and related crystalline phases in rapidly solidified Mn4Si[J]. Phys. Status Solidi, 1988, 107A: 511
[11] Ma X L, Kuo K H.Decagonal quasicrystal and related crystalline phases in slowly solidified Al-Co alloys[J]. Metall. Trans., 1992, 23A: 1121
[12] Naumovi? D, Aebi P, Schlapbach L, et al.Formation of a stable decagonal quasicrystalline Al-Pd-Mn surface layer[J]. Phys. Rev. Lett., 2001, 87: 195506
[13] Abe E, Tsai A P.Structure of a metastable Al3Ni decagonal quasicrystal: Comparison with a highly perfect Al72Ni20Co8[J]. J. Alloys Compd., 2002, 342: 96
[14] Li H, Ma H K, Hou L G, et al.Shield-like tile and its application to the decagonal quasicrystal-related structures in Al-Cr-Fe-Si alloys[J]. J. Alloys Compd., 2017, 701: 494
[15] Ishimasa T, Nissen H U, Fukano Y.New ordered state between crystalline and amorphous in Ni-Cr particles[J]. Phys. Rev. Lett., 1985, 55: 511
[16] Conrad M, Krumeich F, Harbrecht B.A dodecagonal quasicrystalline chalcogenide[J]. Angew. Chem. Int. Ed., 1998, 37: 1383
[17] Ye X C, Chen J, Irrgang M E, et al.Quasicrystalline nanocrystal superlattice with partial matching rules[J]. Nat. Mater., 2017, 16: 214
[18] Kuo K H.Quasiperiodic Crystals [M]. Hangzhou: Zhejiang Science & Technology Press, 2004: 130(郭可信. 准晶研究 [M]. 杭州: 浙江科学技术出版社, 2004: 130)
[19] Kuo K H.Crystallographic features of quasicrystals[J]. Prog. Chem., 1994, 6: 266(郭可信. 准晶的晶体学特征 [J]. 化学进展, 1994, 6: 266)
[20] Abe E, Yamamoto A.Structure of an approximant crystal in Ni-rich Al71Ni22Co7[J]. Philos. Mag., 2011, 91: 2617
[21] Ye H Q, Wang D N, Kuo K H. Fivefold symmetry in real and reciprocal spaces[J]. Ultramicroscopy, 1985, 16: 273
[22] Ye H Q.Periodic and aperiodic arrangements of icosahedral columns in pentagonal Frank-Kasper phases and analogs [J]. Mater. Sci. Forum, 1987, 22-24: 103
[23] Zhou D S, Ye H Q, Li D X, et al.Microdomain structure displaying apparent decagonal symmetry[J]. Phys. Rev. Lett., 1988, 60: 2180
[24] Xie H B, Pan H C, Ren Y P, et al.New structured laves phase in the Mg-In-Ca system with nontranslational symmetry and two unit cells[J]. Phys. Rev. Lett., 2018, 120: 085701
[25] Xie H B, Pan H C, Ren Y P, et al.Self-assembly of two unit cells into a nanodomain structure containing five-fold symmetry[J]. J. Phys. Chem. Lett., 2018, 9: 4373
[26] Vainshtein B.K. Fundamentals of Crystals: Symmetry, and Methods of Structural Crystallography[M]. 1994: 1
[27] Cui Y H.Development of crystal symmetry theory in last three hundred years[J]. Explor. Nat., 1984,(4): 92(崔云昊. 晶体对称理论三百年 [J]. 大自然探索, 1984, (4): 92)
[28] Chen J Z.Discovery and development of crystallography and quasicrystallography[J]. J. China Univ. Geosci., 1993, 18(S1): 1(陈敬中. 晶体学、准晶体学的发生和发展 [J]. 中国地质大学学报, 1993, 18(S1): 1)
[29] Kroto H W, Heath J R, Obrien S C, et al.C60: Buckminsterfullerene[J]. Nature, 1985, 318: 162
[30] Bednorz J G, Mullerk A.Possible high Tc superconductivity in the Ba-La-Cu-O system[J]. Z. Phys.-Condensed Matter, 1986, 64B: 189
[31] Takakura H, Gomez C P, Yamamoto A, et al.Atomic structure of the binary icosahedral Yb-Cd quasicrystal[J]. Nat. Mater., 2007, 6: 58
[32] Abe E.Electron microscopy of quasicrystals-where are the atoms?[J]. Chem. Soc. Rev., 2012, 41: 6787
[33] Flicker F.One-dimensional quasicrystals from incommensurate charge order[J]. Phys. Rev. Lett., 2015, 115: 236401
[34] He Z B, Wei D X, Shen X, et al.Approximants of Al-Cr-Fe-Si decagonal quasicrystals described by single structural block[J]. J. Alloys Compd., 2015, 647: 797
[35] Sinha A K.Topologically close-packed structures of transition metal alloys[J]. Prog. Mater. Sci., 1972, 15: 81
[36] Liu C T, Zhu J H, Brady M P, et al.Physical metallurgy and mechanical properties of transition-metal Laves phase alloys[J]. Intermetallics, 2000, 8: 1119
[37] Kirkland E J, Loane R F, Silcox J.Simulation of annular dark field stem images using a modified multislice method[J]. Ultramicroscopy, 1987, 23: 77
[38] Muller D A.Structure and bonding at the atomic scale by scanning transmission electron microscopy[J]. Nat. Mater., 2009, 8: 263
[39] Nie J F.Precipitation and hardening in magnesium alloys[J]. Metall. Mater. Trans., 2012, 43A: 3891
[40] Sturkey L, Clark J B.Mechanism of age-hardening in magnesium zinc alloys[J]. J. Inst. Met., 1959, 88: 177
[41] Gallot J, Guinier A, Lal K, et al.Etude aus rayons X des phenomenes de precipitation dans un alliage magnesium-zinc a 6% de zinc[J]. C.R. Hebd. Seances Acad. Sci., 1964, 258: 2818
[42] Gallot J, Graf R.Nouvelles observations aux rayon X et au microscope electronique sur la phase transitoire apparaissant dans l'alliage magnesium-zinc a 6% de zinc[J]. C.R. Hebd. Seances Acad. Sci., 1965, 261: 728
[43] Chun J S, Bryne J G.Precipitate strengthening mechanisms in magnesium zinc alloy single crystals[J]. J. Mater. Sci., 1969, 4: 861
[44] Wei L Y, Dunlop G L, Westengen H.Precipitation hardening of Mg-Zn and Mg-Zn-RE alloys[J]. Metall. Mater. Trans., 1995, 26A: 1705
[45] Rokhlin L L. Oreshkina A A.Research into the structure of a metastable phase formed during the breakdown of a supersaturated solution in magnesium-zinc alloys[J]. Fiz. Met. Metalloved., 1988, 66: 559
[46] Gao X, Nie J F.Characterization of strengthening precipitate phases in a Mg-Zn alloy[J]. Scr. Mater., 2007, 56: 645
[47] Rosalie J M, Somekawa H, Singh A, et al.Structural relationships among MgZn2 and Mg4Zn7 phases and transition structures in Mg-Zn-Y alloys[J]. Philos. Mag., 2010, 90: 3355
[48] Langelier B, Korinek A, Donnadieu P, et al.Improving precipitation hardening behavior of Mg-Zn based alloys with Ce-Ca microalloying additions[J]. Mater. Charact., 2016, 120: 18
[1] 徐永生, 张卫刚, 徐凌超, 但文蛟. 铁素体晶间变形协调与硬化行为模拟研究[J]. 金属学报, 2023, 59(8): 1042-1050.
[2] 温冬辉, 姜贝贝, 王清, 李相伟, 张鹏, 张书彦. MoNb改性FeCrAl不锈钢高温组织演变和力学性能[J]. 金属学报, 2022, 58(7): 883-894.
[3] 郭祥如, 申俊杰. 孪生诱发软化与强化效应的Cu晶体塑性行为模拟[J]. 金属学报, 2022, 58(3): 375-384.
[4] 郭昊函, 杨杰, 刘芳, 卢荣生. GH4169合金拘束相关的疲劳裂纹萌生寿命[J]. 金属学报, 2022, 58(12): 1633-1644.
[5] 李学达, 李春雨, 曹宁, 林学强, 孙建波. 高强管线钢焊接临界再热粗晶区中逆转奥氏体的逆相变晶体学[J]. 金属学报, 2021, 57(8): 967-976.
[6] 陈建军, 丁雨田, 王琨, 闫康, 马元俊, 王兴茂, 周胜名. Laves相对 GH3625合金管材热挤压过程中爆裂行为的影响[J]. 金属学报, 2021, 57(5): 641-650.
[7] 左良, 李宗宾, 闫海乐, 杨波, 赵骧. 多晶Ni-Mn-X相变合金的织构化与功能行为[J]. 金属学报, 2021, 57(11): 1396-1415.
[8] 吴贇, 刘雅辉, 康茂东, 高海燕, 王俊, 孙宝德. K4169合金循环加载过程中的微观组织演变[J]. 金属学报, 2020, 56(9): 1185-1194.
[9] 陈永君, 白妍, 董闯, 解志文, 燕峰, 吴迪. 基于有限元分析的准晶磨料强化不锈钢表面钝化行为[J]. 金属学报, 2020, 56(6): 909-918.
[10] 刘金来, 叶荔华, 周亦胄, 李金国, 孙晓峰. 一种单晶高温合金的弹性性能的各向异性[J]. 金属学报, 2020, 56(6): 855-862.
[11] 孙衡,林小娉,周兵,赵圣诗,唐琴,董允. 定向凝固Mg-xGd-0.5Y合金的微观组织及拉伸变形行为[J]. 金属学报, 2020, 56(3): 340-350.
[12] 马德新,王富,徐维台,徐文梁,赵运兴. 高温合金单晶铸件中条纹晶的形成机制[J]. 金属学报, 2020, 56(3): 301-310.
[13] 姚美意,张兴旺,侯可可,张金龙,胡鹏飞,彭剑超,周邦新. Zr-0.75Sn-0.35Fe-0.15Cr合金在250 ℃去离子水中的初期腐蚀行为[J]. 金属学报, 2020, 56(2): 221-230.
[14] 段灵杰,刘永长. 立方晶体弹性常数和EAM/FS势函数的关系[J]. 金属学报, 2020, 56(1): 112-118.
[15] 胡斌,李树索,裴延玲,宫声凯,徐惠彬. <111>取向小角偏离对一种镍基单晶高温合金蠕变性能的影响[J]. 金属学报, 2019, 55(9): 1204-1210.