Please wait a minute...
金属学报  2019, Vol. 55 Issue (6): 701-708    DOI: 10.11900/0412.1961.2018.00347
  本期目录 | 过刊浏览 |
冷轧态Ti-35Nb-2Zr-0.3O合金的异常热膨胀行为
蓝春波1,2,梁家能1,劳远侠1,谭登峰1,黄春艳1,莫羡忠1,庞锦英1()
1. 南宁师范大学化学与材料学院广西天然高分子化学与物理重点实验室 南宁 530001
2. 东南大学材料科学与工程学院 南京 211189
Anomalous Thermal Expansion Behavior of Cold-RolledTi-35Nb-2Zr-0.3O Alloy
Chunbo LAN1,2,Jianeng LIANG1,Yuanxia LAO1,Dengfeng TAN1,Chunyan HUANG1,Xianzhong MO1,Jinying PANG1()
1. Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China
2. School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
引用本文:

蓝春波,梁家能,劳远侠,谭登峰,黄春艳,莫羡忠,庞锦英. 冷轧态Ti-35Nb-2Zr-0.3O合金的异常热膨胀行为[J]. 金属学报, 2019, 55(6): 701-708.
Chunbo LAN, Jianeng LIANG, Yuanxia LAO, Dengfeng TAN, Chunyan HUANG, Xianzhong MO, Jinying PANG. Anomalous Thermal Expansion Behavior of Cold-RolledTi-35Nb-2Zr-0.3O Alloy[J]. Acta Metall Sin, 2019, 55(6): 701-708.

全文: PDF(10109 KB)   HTML
摘要: 

采用高真空非自耗电弧熔炼炉对Ti-35Nb-2Zr-0.3O (质量分数,%)合金进行熔炼。运用OM、XRD、SEM、TEM和静态热机械分析仪对Ti-35Nb-2Zr-0.3O合金进行表征,研究冷轧形变对合金显微组织及热膨胀行为的影响。结果表明:Ti-35Nb-2Zr-0.3O合金在冷轧过程中产生应力诱发马氏体α" (stress-induced martensitic α",SIM α")相,并形成平行于轧制方向的强<110>织构。等轴晶组织的Ti-35Nb-2Zr-0.3O合金表现出正常的热膨胀行为。形变后,合金的热膨胀行为出现异常现象,轧制方向表现为负膨胀,负膨胀程度随着形变量的增加而增大,截面方向表现为大于固溶态的正膨胀。30%形变合金的轧制方向在室温到250 ℃具有Invar效应,这一现象归因于SIM α"相变、晶格畸变和<110>织构的形成。冷轧态Ti-35Nb-2Zr-0.3O合金在室温到110 ℃的异常膨胀归因于SIM α"相到β相的晶格转变,而在高于110 ℃的异常膨胀行为归因于ω相和α相的析出。

关键词 Ti-35Nb-2Zr-0.3O合金冷轧显微组织异常热膨胀    
Abstract

Thermal expansion behavior is one of the intrinsic properties of most materials, which is very difficult to control their thermal expansion behavior. Metallic material with ultra-low coefficient of thermal expansion named Invar effect was first found in Fe-Ni alloys. Recently, a multifunctional titanium alloy termed Gum metal (the typical composition is Ti-36Nb-2Ta-3Zr-0.3O, mass fraction, %; three electronic parameters: electron per atom ratio e/a≈4.24, bond order Bo≈2.87 and d electron orbital energy level Md≈2.45 eV) has been developed, and the alloy exhibits Invar effect after severe cold working. It is well known that the Invar effect of Fe-Ni alloys is related to the magnetic transition. However, titanium and its alloys are paramagnetic, and thus this mechanism cannot be used to explain Invar effect of Gum metal. In addition, the Invar effect of Gum metal is related to a dislocation-free plastic deformation mechanism. So far, there is still some controversy about this mechanism. In this study, a new β-type Ti-Nb base alloy Ti-35Nb-2Zr-0.3O (mass fraction, %) was developed whose three electronic parameters are different from those of the above mentioned Gum metal. The alloy was melted under high-purity argon atmosphere in an electric arc furnace, and the effects of cold rolling on microstructures and thermal expansion behaviors were characterized by OM, XRD, SEM, TEM and thermal mechanical analyzer (TMA). Results showed that the stress-induced martensitic α" (SIM α") phase transformation occurs after cold rolling, and the dominant <110> texture forms after severe plastic deformation. The equiaxed grains of Ti-35Nb-2Zr-0.3O alloy exhibit ordinary positive thermal expansion behavior and the thermal expansion rate increases with the increase of temperature. After cold deformation, negative thermal expansion occurs along rolling direction, and normal thermal expansion higher than solution treated sample occurs along transverse direction. The abnormal thermal expansion extent of the alloy increases with the increase of deformation reduction. The 30% cold deformed alloy along rolling direction possesses Invar effect between room temperature to 250 ℃, which is possibly related to SIM α" phase transformation, lattice distortion and <110> texture formation. The anomalous thermal expansion of the cold deformed samples in a temperature range from 25 ℃ to 110 ℃ is attributed to the lattice transition of SIM α" to β phase, while above 110 ℃ is attributed to the precipitation of ω and α phases.

Key wordsTi-35Nb-2Zr-0.3O alloy    cold rolling    microstructure    anomalous thermal expansion
收稿日期: 2018-07-25     
ZTFLH:  TG146  
基金资助:广西自然科学基金项目(Nos.2018GXNSFAA138057);广西自然科学基金项目(2018JJA110055);广西大学广西有色金属及特色材料加工重点实验室开放基金项目(Nos.GXYSOF1802);广西大学广西有色金属及特色材料加工重点实验室开放基金项目(GXYSOF1810)
作者简介: 蓝春波,男,1985年生,博士
图1  Ti-35Nb-2Zr-0.3O合金固溶态及不同形变的OM像
图2  固溶态和90%形变Ti-35Nb-2Zr-0.3O合金的反极图
图3  Ti-35Nb-2Zr-0.3O合金在固溶态及不同形变下的XRD谱
图4  固溶态及不同形变量Ti-35Nb-2Zr-0.3O合金的热膨胀曲线
图5  90%形变Ti-35Nb-2Zr-0.3O合金在不同温度下的循环膨胀曲线
图6  90%形变Ti-35Nb-2Zr-0.3O合金在室温至850 ℃的热膨胀曲线和膨胀系数曲线
图7  90%形变Ti-35Nb-2Zr-0.3O合金在300、350和450 ℃时效1 h后显微组织的TEM像及2种不同取向的α相和ω相及[110]β晶带SAED谱的示意图
[1] Kainuma R, Wang J J, Omori T, et al. Invar-type effect induced by cold-rolling deformation in shape memory alloys [J]. Appl. Phys. Lett., 2002, 80: 4348
[2] Nakai M, Niinomi M, Akahori T, et al. Anomalous thermal expansion of cold-rolled Ti-Nb-Ta-Zr alloy [J]. Mater. Trans., 2009, 50: 423
[3] Guillaume C E. The anomaly of the nickel-steels [J]. Proc. Phys. Soc. London, 1920, 32: 374
[4] Li X F, Chen N N, Li J J, et al. Effect of temperature and strain rate on deformation behavior of Invar 36 alloy [J]. Acta. Metall. Sin., 2017, 53: 968
[4] (李细锋, 陈楠楠, 李佼佼等. 温度与应变速率对Invar 36合金变形行为的影响 [J]. 金属学报, 2017, 53: 968)
[5] Abdel-Hady M, Morinaga M. Controlling the thermal expansion of Ti alloys [J]. Scr. Mater., 2009, 61: 825
[6] Chen J, Hu L, Deng J X, et al. Negative thermal expansion in functional materials: Controllable thermal expansion by chemical modifications [J]. Chem. Soc. Rev., 2015, 44: 3522
[7] Liu X N, Lin K, Gao Q L, et al. Structure and phase transformation in the giant magnetostriction laves-phase SmFe2 [J]. Inorg. Chem., 2017, 57: 689
[8] Song Y Z, Chen J, Liu X Z, et al. Zero thermal expansion in magnetic and metallic Tb(Co,Fe)2 intermetallic compounds [J]. J. Am. Chem. Soc., 2018, 140: 602
[9] Kuramoto S, Furuta T, Hwang J H, et al. Plastic deformation in a multifunctional Ti-Nb-Ta-Zr-O alloy [J]. Metall. Mater. Trans., 2006, 37A: 657
[10] Furuta T, Kuramoto S, Chen R, et al. Effect of oxygen on phase stability and elastic deformation behavior in Gum metal [J]. J. Jpn. Inst. Met., 2006, 70: 579
[11] Wang W, Huang R, Zhao Y, et al. Adjustable zero thermal expansion in Ti alloys at cryogenic temperature [J]. J. Alloys Compd., 2018, 740: 47
[12] Saito T, Furuta T, Hwang J H, et al. Multifunctional alloys obtained via a dislocation-free plastic deformation mechanism [J]. Science, 2003, 300: 464
[13] Xing H, Guo W Y, Sun J. Substructure of recovered Ti-23Nb-0.7Ta-22r-O alloy [J]. Trans. Nonferrous Met. Soc. China, 2007, 17: 1456
[14] Talling R J, Dashwood R J, Jackson M, et al. On the mechanism of superelasticity in Gum metal [J]. Acta Mater., 2009, 57: 1188
[15] Talling R J, Dashwood R J, Jackson M, et al. Compositional variability in Gum metal [J]. Scr. Mater., 2009, 60: 1000
[16] Besse M, Castany P, Gloriant T. Mechanisms of deformation in Gum metal TNTZ-O and TNTZ titanium alloys: A comparative study on the oxygen influence [J]. Acta Mater., 2011, 59: 5982
[17] Yang Y, Li G P, Cheng G M, et al. Multiple deformation mechanisms of Ti-22.4Nb-0.73Ta-2.0Zr-1.34O alloy [J]. Appl. Phys. Lett., 2009, 94: 061901
[18] Kim H Y, Wei L S, Kobayashi S, et al. Nanodomain structure and its effect on abnormal thermal expansion behavior of a Ti-23Nb-2Zr-0.7Ta-1.2O alloy [J]. Acta Mater., 2013, 61: 4874
[19] Gutkin M Y, Ishizaki T, Kuramoto S, et al. Nanodisturbances in deformed Gum metal [J]. Acta Mater., 2006, 54: 2489
[20] Wei L S, Kim H Y, Miyazaki S. Effects of oxygen concentration and phase stability on nano-domain structure and thermal expansion behavior of Ti-Nb-Zr-Ta-O alloys [J]. Acta Mater., 2015, 100: 313
[21] Lan C B, Li G, Wu Y, et al. Effects of cold deformation on microstructure and mechanical properties of Ti-35Nb-2Zr-0.3O alloy for biomedical applications [J]. Trans. Nonferrous Met. Soc. China, 2017, 27: 1537
[22] Lan C B, Wu Y, Chen F. Effects of cold rolling on microstructure and anomalous thermal expansion behaviors of Ti-35Nb-2Zr-0.3O alloy [J]. Key Eng. Mater., 2017, 729: 46
[23] Guo W, Quadir M Z, Ferry M. The mode of deformation in a cold-swaged multifunctional Ti-Nb-Ta-Zr-O alloy [J]. Metall. Mater. Trans., 2013, 44A: 2307
[24] J W Jr Morris, Hanlumyuang Y, Sherburne M, et al. Anomalous transformation-induced deformation in <110> textured Gum metal [J]. Acta Mater., 2010, 58: 3271
[25] Lan C B, Wu Y, Guo L L, et al. Microstructure, texture evolution and mechanical properties of cold rolled Ti-32.5Nb-6.8Zr-2.7Sn biomedical beta titanium alloy [J]. J. Mater. Sci. Technol., 2018, 34: 788
[26] Lan C B, Wu Y, Guo L L, et al. Effects of cold rolling on microstructure, texture evolution and mechanical properties of Ti-32.5Nb-6.8Zr-2.7Sn-0.3O alloy for biomedical applications [J]. Mater. Sci. Eng., 2017, A690: 170
[27] Hwang J, Kuramoto S, Furuta T, et al. Phase-stability dependence of plastic deformation behavior in Ti-Nb-Ta-Zr-O alloys [J]. J. Mater. Eng. Perform., 2005, 14: 747
[28] Wei Q Q, Wang L Q, Fu Y F, et al. Influence of oxygen content on microstructure and mechanical properties of Ti-Nb-Ta-Zr alloy [J]. Mater. Des., 2011, 32: 2934
[29] Wang Y, Gao J H, Wu H J, et al. Strain glass transition in a multifunctional β-type Ti alloy [J]. Sci. Rep., 2015, 4: 3995
[30] Kim H Y, Sasaki T, Okutsu K, et al. Texture and shape memory behavior of Ti-22Nb-6Ta alloy [J]. Acta Mater., 2006, 54: 423
[31] Afonso C R M, Ferrandini P L, Ramirez A J, et al. High resolution transmission electron microscopy study of the hardening mechanism through phase separation in a β-Ti-35Nb-7Zr-5Ta alloy for implant applications [J]. Acta Biomater., 2010, 6: 1625
[32] Málek J, Hnilica F, Vesely J, et al. The influence of chemical composition and thermo-mechanical treatment on Ti-Nb-Ta-Zr alloys [J]. Mater. Des., 2012, 35: 731
[33] Guo Q H, Zhan Y Z, Mo H L, et al. Aging response of the Ti-Nb system biomaterials with β-stabilizing elements [J]. Mater. Des., 2010, 31: 4842
[34] Ferrandini P L, Cardoso F F, Souza S A, et al. Aging response of the Ti-35Nb-7Zr-5Ta and Ti-35Nb-7Ta alloys [J]. J. Alloys Compd., 2007, 433: 207
[35] Guo W Y, Li J, Sun J. Thermal expansion behavior of Ti-23Nb-0.7Ta-2Zr-O alloy [J]. Mater Res. Appl., 2010, 4: 169
[35] (郭文渊, 李 俊, 孙 坚. Ti-23Nb-0.7Ta-2Zr-O合金的热膨胀行为 [J]. 材料研究与应用, 2010, 4: 169)
[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[4] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[5] 王周头, 袁清, 张庆枭, 刘升, 徐光. 冷轧中碳梯度马氏体钢的组织与力学性能[J]. 金属学报, 2023, 59(6): 821-828.
[6] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[7] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[8] 李殿中, 王培. 金属材料的组织定制[J]. 金属学报, 2023, 59(4): 447-456.
[9] 朱智浩, 陈志鹏, 刘田雨, 张爽, 董闯, 王清. 基于不同 α / β 团簇式比例的Ti-Al-V合金的铸态组织和力学性能[J]. 金属学报, 2023, 59(12): 1581-1589.
[10] 芮祥, 李艳芬, 张家榕, 王旗涛, 严伟, 单以银. 新型纳米复合强化9Cr-ODS钢的设计、组织与力学性能[J]. 金属学报, 2023, 59(12): 1590-1602.
[11] 于少霞, 王麒, 邓想涛, 王昭东. GH3600镍基高温合金极薄带的制备及尺寸效应[J]. 金属学报, 2023, 59(10): 1365-1375.
[12] 葛进国, 卢照, 何思亮, 孙妍, 殷硕. 电弧熔丝增材制造2Cr13合金组织与性能各向异性行为[J]. 金属学报, 2023, 59(1): 157-168.
[13] 彭立明, 邓庆琛, 吴玉娟, 付彭怀, 刘子翼, 武千业, 陈凯, 丁文江. 镁合金选区激光熔化增材制造技术研究现状与展望[J]. 金属学报, 2023, 59(1): 31-54.
[14] 杨天野, 崔丽, 贺定勇, 黄晖. 选区激光熔化AlSi10Mg-Er-Zr合金微观组织及力学性能强化[J]. 金属学报, 2022, 58(9): 1108-1117.
[15] 张鑫, 崔博, 孙斌, 赵旭, 张欣, 刘庆锁, 董治中. Y元素对Cu-Al-Ni高温形状记忆合金性能的影响[J]. 金属学报, 2022, 58(8): 1065-1071.