Please wait a minute...
金属学报  2019, Vol. 55 Issue (5): 585-592    DOI: 10.11900/0412.1961.2018.00319
  本期目录 | 过刊浏览 |
低温回火对超大形变冷拔珠光体钢丝显微组织和力学性能的影响
冯汉臣1,闵学刚2,魏大圣1,周立初1,崔世云2,方峰1()
1. 东南大学材料科学与工程学院 南京 211189
2. 江苏省宝钢精密钢丝有限公司 南通 226114
Effect of Low Temperature Annealing on Microstructure and Mechanical Properties of Ultra-Heavy Cold-DrawnPearlitic Steel Wires
Hanchen FENG1,Xuegang MIN2,Dasheng WEI1,Lichu ZHOU1,Shiyun CUI2,Feng FANG1()
1. School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
2. Jiangsu Bao Steel Precision Steel Wire Co., Ltd., Nantong 226114, China
引用本文:

冯汉臣,闵学刚,魏大圣,周立初,崔世云,方峰. 低温回火对超大形变冷拔珠光体钢丝显微组织和力学性能的影响[J]. 金属学报, 2019, 55(5): 585-592.
Hanchen FENG, Xuegang MIN, Dasheng WEI, Lichu ZHOU, Shiyun CUI, Feng FANG. Effect of Low Temperature Annealing on Microstructure and Mechanical Properties of Ultra-Heavy Cold-DrawnPearlitic Steel Wires[J]. Acta Metall Sin, 2019, 55(5): 585-592.

全文: PDF(48884 KB)   HTML
摘要: 

采用力学分析、SEM、TEM、3DAP和DSC技术研究了低温回火对超大应变冷拔珠光体钢丝微观组织和力学性能的影响。结果表明:应变ε≤4的钢丝,在120~170 ℃范围内进行低温回火能有效提高钢丝的强度,同时塑性略有下降;ε=3.0的钢丝,在150 ℃回火8 min后,钢丝强度提高约150 MPa;ε=4.5的钢丝,在170 ℃回火后,钢丝强度和塑性同时下降。钢丝经超大应变(ε=4.5)变形后,渗碳体发生分解。冷拔钢丝在150~170 ℃之间存在明显的放热峰,TEM衍射斑分析发现了衍射斑点拖尾的现象,这主要是由于在150 ℃热处理后,C原子在位错处偏聚引起的;而HRTEM分析表明,在170 ℃处理后,渗碳体由非晶转变为纳米晶,有效地钉扎和阻碍位错运动,这2种现象共同导致了钢丝的低温回火强化。

关键词 珠光体钢丝冷拔低温回火处理抗拉强度渗碳体    
Abstract

Ultra-heavy cold-drawn pearlite wires provide an excellent combination of ductility and strength. Therefore, they have been widely used in engineering applications, such as suspension bridge cables, automotive tyre cords and cutting wires. In this work, the effects of low temperature annealing on the microstructure and mechanical properties of ultra-heavy cold-drawn pearlitic steel wires were investigated. The mechanical properties have been determined by tensile testing and the structures analyzed by TEM and HRTEM. The overall carbon contents in the detected volumes as well as the carbon concentrations in ferrite and cementite were measured by 3DAP. Experimental results show that, for the steel wires with strain (ε) less than 4, annealing in the range of 120~170 ℃ could effectively increase the strength of steel wires and remain most of the plastic performance. The tensile strength of wire with a strain of 3.0 can be increased about 150 MPa after annealing at 150 ℃ for 8 min. However, both of strength and toughness of steel wires with a strain 4.5 decreased after annealed at 170 ℃. After the steel wire is deformed by excessive strain (ε=4.5), the cementite decomposed obviously. DSC analysis showed that there is an obviously exothermic peak between 150 ℃ and 170 ℃ in the DSC curve. The TEM diffraction pattern analysis reveal the phenomenon of tailing at diffraction pattern, which is mainly caused by segregation of carbon atom at the dislocation after annealed at 150 ℃. However, HRTEM images show that annealing temperature as low as 170 ℃ could result in the transformation of partial cementite from amorphous state to nano-crystalline state. It could effectively pin and hinder the movement of dislocations. The underlying mechanism responsible for changes in microstructure and mechanical properties after annealing at low temperature are closely related to C-segregation and "crystal-amorphous" cementite transformation in heavy cold-drawn pearlitic steel wires.

Key wordspearlitic steel wire    cold-drawn    low temperature annealing    tensile strength    cementite
收稿日期: 2018-07-09     
ZTFLH:  TG142  
基金资助:国家自然科学基金项目(51371050);江苏省333工程资助项目(BRA2018045);江苏省科技成果转化资金专项项目(BA2017112);江苏省六大人才高峰计划项目(2015-XCL-004)
作者简介: 冯汉臣,男,1991年生,博士生
图1  不同回火温度下不同应变(ε)冷拔钢丝的抗拉强度随回火时间的变化曲线
图2  不同应变下冷拔钢丝经不同温度回火32 min前后的工程应力-应变曲线
图3  盘条及冷拔钢丝(ε=3.0)经170 ℃回火处理32 min前后的显微组织
图4  ε=3.0冷拔钢丝经170 ℃回火处理32 min前后纵截面显微组织的TEM明场像和暗场像
图5  冷拔钢丝(ε=3.5)经170 ℃回火32 min前后的HRTEM分析
图6  ε=4.5时冷拔钢丝C原子三维空间分布图及垂直方向和水平方向的C浓度分布
图7  ε=4.0时冷拔钢丝经150 ℃回火32 min后纵截面TEM明场像及电子衍射花样
图8  不同应变冷拔珠光体钢丝的DSC曲线
[1] LiY J, ChoiP, BorchersC, et al. Atomic-scale mechanisms of deformation-induced cementite decomposition in pearlite[J]. Acta Mater., 2011, 59: 3965
[2] LanguillaumeJ, KapelskiG, BaudeletB. Cementite dissolution in heavily cold drawn pearlitic steel wires[J]. Acta Mater., 1997, 45: 1201
[3] EmburyJ D, FisherR M. The structure and properties of drawn pearlite[J]. Acta Metall., 1966, 14: 147
[4] LiY J, ChoiP, BorchersC, et al. Atom probe tomography characterization of heavily cold drawn pearlitic steel wire[J]. Ultramicroscopy, 2011, 111: 628
[5] BorchersC, Al-KassabT, GotoS, et al. Partially amorphous nanocomposite obtained from heavily deformed pearlitic steel[J]. Mater. Sci. Eng., 2009, A502: 131
[6] ZhouL C, HuX J, MaC, et al. Effect of pearlitic lamella orientation on deformation of pearlite steel wire during cold drawing[J].Acta Metall. Sin., 2015, 51: 897
[6] (周立初, 胡显军, 马 驰等. 珠光体层片取向对冷拔珠光体钢丝形变的影响 [J]. 金属学报, 2015, 51: 897)
[7] BangC W, SeolJ B, YangY S, et al. Atomically resolved cementite dissolution governed by the strain state in pearlite steel wires[J]. Scr. Mater., 2015, 108: 151
[8] LiY J, ChoiP, GotoS, et al. Atomic scale investigation of redistribution of alloying elements in pearlitic steel wires upon cold-drawing and annealing[J]. Ultramicroscopy, 2013, 132: 233
[9] ZhangX D, HansenN, GodfreyA, et al. Dislocation-based plasticity and strengthening mechanisms in sub-20 nm lamellar structures in pearlitic steel wire[J]. Acta Mater., 2016, 114: 176
[10] LiY J, RaabeD, HerbigM, et al. Segregation stabilizes nanocrystalline bulk steel with near theoretical strength[J]. Phys. Rev. Lett., 2014, 113: 106104
[11] FangF, ZhouL C, HuX J, et al. Microstructure and mechanical properties of cold-drawn pearlitic wires affect by inherited texture[J]. Mater. Des., 2015, 79: 60
[12] FangF, ZhaoY F, ZhouL C, et al. Texture inheritance of cold drawn pearlite steel wires after austenitization[J]. Mater. Sci. Eng., 2014, A618: 505
[13] BorchersC, KirchheimR. Cold-drawn pearlitic steel wires[J]. Prog. Mater. Sci., 2016, 82: 405
[14] ZhangX D, GodfreyA, HuangX X, et al. Microstructure and strengthening mechanisms in cold-drawn pearlitic steel wire[J]. Acta Mater., 2011, 59: 3422
[15] DanoixF, JulienD, SauvageX, et al. Direct evidence of cementite dissolution in drawn pearlitic steels observed by tomographic atom probe[J]. Mater. Sci. Eng., 1998, A250: 8
[16] GavriljukV G. Decomposition of cementite in pearlitic steel due to plastic deformation[J]. Mater. Sci. Eng., 2003, A345: 81
[17] FangF, ZhaoY F, LiuP P, et al. Deformation of cementite in cold drawn pearlitic steel wire[J]. Mater. Sci. Eng., 2014, A608: 11
[18] HonoK, OhnumaM, MurayamaM, et al. Cementite decomposition in heavily drawn pearlite steel wire[J]. Scr. Mater., 2001, 44: 977
[19] FangF, HuX J, ChenS H, et al. Revealing microstructural and mechanical characteristics of cold-drawn pearlitic steel wires undergoing simulated galvanization treatment[J]. Mater. Sci. Eng., 2012, A547: 51
[20] LiY J, ChoiP, GotoS, et al. Evolution of strength and microstructure during annealing of heavily cold-drawn 6.3 GPa hypereutectoid pearlitic steel wire[J]. Acta Mater., 2012, 60: 4005
[21] ZhouL C, FangF, ZhouX F, et al. Cementite nano-crystallization in cold drawn pearlitic wires instigated by low temperature annealing[J]. Scr. Mater., 2016, 120: 5
[22] LamontagneA, MassardierV, SauvageX, et al. Evolution of carbon distribution and mechanical properties during the static strain ageing of heavily drawn pearlitic steel wires[J]. Mater. Sci. Eng., 2016, A667: 115
[23] JoungS W, KangU G, HongS P, et al. Aging behavior and delamination in cold drawn and post-deformation annealed hyper-eutectoid steel wires[J]. Mater. Sci. Eng., 2013, A586: 171
[24] WattéP, Van HumbeeckJ, AernoudtE, et al. Strain ageing in heavily drawn eutectoid steel wires[J]. Scr. Mater., 1996, 34: 89
[25] LamontagneA, KleberX, Massardier-JourdanV, et al. Identification of the mechanisms responsible for static strain ageing in heavily drawn pearlitic steel wires[J]. Philos. Mag. Lett., 2014, 94: 495
[26] TakahashiJ, KosakaM, KawakamiK, et al. Change in carbon state by low-temperature aging in heavily drawn pearlitic steel wires[J]. Acta Mater., 2012, 60: 387
[27] ParkD B, LeeJ W, LeeY S, et al. Effects of the annealing temperature and time on the microstructural evolution and corresponding the mechanical properties of cold-drawn steel wires[J]. Met. Mater. Int., 2008, 14: 59
[28] KirchheimR. Reducing grain boundary, dislocation line and vacancy formation energies by solute segregation. I. Theoretical background[J]. Acta Mater., 2007, 55: 5129
[29] BorchersC, ChenY, DeutgesM, et al. Carbon-defect interaction during recovery and recrystallization of heavily deformed pearlitic steel wires[J]. Philos. Mag. Lett., 2010, 90: 581
[30] IvanisenkoY, WunderlichR K, ValievR Z, et al. Annealing behaviour of nanostructured carbon steel produced by severe plastic deformation[J]. Scr. Mater., 2003, 49: 947
[31] TaylorK A, OlsonG B, CohenM, et al. Carbide precipitation during stage I tempering of Fe-Ni-C martensites[J]. Metall. Trans., 1989, 20A: 2749
[32] GuoW, MengY F, ZhangX, et al. Extremely hard amorphous-crystalline hybrid steel surface produced by deformation induced cementite amorphization[J]. Acta Mater., 2018, 152: 107
[1] 张林, 郭晓, 高建文, 邓安元, 王恩刚. 电磁搅拌对TiB2颗粒增强钢组织和力学性能的影响[J]. 金属学报, 2020, 56(9): 1239-1246.
[2] 徐文胜, 张文征. 先共析渗碳体上形核的珠光体晶体学研究[J]. 金属学报, 2019, 55(4): 496-510.
[3] 季培蓓, 周立初, 周雪峰, 方峰, 蒋建清. 冷拉拔珠光体钢丝的力学性能各向异性研究[J]. 金属学报, 2018, 54(4): 494-500.
[4] 武慧东, 宫本吾郎, 杨志刚, 张弛, 陈浩, 古原忠. Fe-1.5(3.0)%Si-0.4%C合金贝氏体不完全转变现象及伴随的渗碳体析出[J]. 金属学报, 2018, 54(3): 367-376.
[5] 刘奋军, 傅莉, 陈海燕. 铝合金薄板高转速搅拌摩擦焊接头组织与力学性能[J]. 金属学报, 2017, 53(12): 1651-1658.
[6] 何岳,向嵩,石维,刘建敏,梁宇,陈朝轶. 冷拔珠光体钢的组织演变对其点蚀行为的影响*[J]. 金属学报, 2016, 52(12): 1536-1544.
[7] 柏琳娜,刘福平,王邃,江峰,孙军,陈良斌,王丰元. Fe-C-Cu粉末锻造汽车发动机连杆的组织与力学性能*[J]. 金属学报, 2016, 52(1): 41-50.
[8] 周立初,胡显军,马驰,周雪峰,蒋建清,方峰. 珠光体层片取向对冷拔珠光体钢丝形变的影响*[J]. 金属学报, 2015, 51(8): 897-903.
[9] 薛滢妤, 唐建成, 卓海鸥, 叶楠, 吴桐, 周旭升. 渗碳体石墨化制备无铅易切削石墨黄铜的组织及性能*[J]. 金属学报, 2015, 51(2): 223-229.
[10] 姬书得,温泉,马琳,李继忠,张利. TC4钛合金搅拌摩擦焊厚度方向的显微组织*[J]. 金属学报, 2015, 51(11): 1391-1399.
[11] 王斌, 刘振宇, 冯洁, 周晓光, 王国栋. 超快速冷却条件下碳素钢中纳米渗碳体的析出行为和强化作用*[J]. 金属学报, 2014, 50(6): 652-658.
[12] 赵天章, 宋鸿武, 张光亮, 程明, 张士宏. 拉拔过程中珠光体钢丝心部的织构演化规律及其对力学性能的影响*[J]. 金属学报, 2014, 50(6): 667-673.
[13] 李俊杰,Godfrey Andrew,刘伟. 奥氏体化与冷却速率对过共析钢组织的影响[J]. 金属学报, 2013, 49(5): 583-592.
[14] 郑成思,李龙飞,杨王玥,孙祖庆. 微观组织对共析钢室温加工硬化行为的影响[J]. 金属学报, 2013, 49(3): 257-264.
[15] 董福涛, 杜林秀, 刘相华, 薛飞. 连续退火工艺对含B搪瓷用钢组织性能的影响[J]. 金属学报, 2013, 49(10): 1160-1168.