Please wait a minute...
金属学报  2018, Vol. 54 Issue (11): 1625-1636    DOI: 10.11900/0412.1961.2018.00308
  材料与工艺 本期目录 | 过刊浏览 |
基于箔材反应退火合成的TiAl基复合材料板材研究进展
耿林, 吴昊, 崔喜平, 范国华()
哈尔滨工业大学材料科学与工程学院 哈尔滨 150001
Recent Progress on the Fabrication of TiAl-Based Composites Sheet by Reaction Annealingof Elemental Foils
Lin GENG, Hao WU, Xiping CUI, Guohua FAN()
School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
引用本文:

耿林, 吴昊, 崔喜平, 范国华. 基于箔材反应退火合成的TiAl基复合材料板材研究进展[J]. 金属学报, 2018, 54(11): 1625-1636.
Lin GENG, Hao WU, Xiping CUI, Guohua FAN. Recent Progress on the Fabrication of TiAl-Based Composites Sheet by Reaction Annealingof Elemental Foils[J]. Acta Metall Sin, 2018, 54(11): 1625-1636.

全文: PDF(6585 KB)   HTML
摘要: 

本文综述了利用纯Ti箔和铝基复合材料(Al-MMC)箔反应退火合成TiAl基复合材料板材的研究进展。该方法包括对多层Ti/Al-MMC复合板的变形和反应退火热处理,在避免对脆性TiAl金属间化合物直接变形的同时,制备出具有较高强度和延伸率的TiAl基复合材料板材。对合成过程中TiAl基复合材料板材的组织演化和形成机理进行了总结,重点阐明了铝基复合材料与Ti的两步热处理的反应机理,提出了消除Kirkendall孔洞的工艺方法,为大尺寸TiAl基复合材料板材的制备提供了可行的工艺方案。

关键词 TiAl金属间化合物复合材料板材反应退火扩散动力学    
Abstract

This paper reviews the current progresses on the fabrication of TiAl-based composites produced by reaction annealing of elemental Ti and Al matrix composite foils. This technique includes deformation and reaction annealing of the multilayer Ti/Al metal matrix composite (MMC) sheet, which prevents traditionally direct deformation of brittle TiAl intermetallic, and TiAl-based composites sheets with good strength-ductility synergy have been produced. The research on microstructure evolution and forming mechanism of the TiAl-based composites sheet during reaction annealing has been summarized, with the focus on the reaction mechanism between Al-MMCs and Ti during reaction annealing, and the method to eliminate Kirkendall voids is proposed. A feasible proposal is provided to fabricate large scale TiAl-based composite sheets.

Key wordsTiAl intermetallics    composite    sheet    reaction annealing    diffusion kinetics
收稿日期: 2018-07-03     
ZTFLH:  TB331  
基金资助:国家重点研发计划项目No.2017YFB0703100及国家自然科学基金项目Nos.51701081、51571070和51571071
作者简介:

作者简介 耿 林,男,1964年生,教授

图1  反应退火法制备TiAl基复合材料板材反应机理示意图[20]
图2  轧制态Ti-(TiB2/Al)板材经650 ℃、50 h退火后的组织形貌和成分分析[24]
图3  600~650 ℃反应退火时TiAl3层厚度实验值与理论值随时间变化关系[24]
图4  600~650 ℃反应退火条件下线性回归分析后lnΔx和lnt关系、TiAl3反应速率常数(K)与1/T关系的线性回归分析[24]
图5  Al熔点以下退火时Ti/(TiB2/Al)扩散偶中TiAl3层的生长模式示意图[24]
图6  Ti-(TiB2/Al)层状板材反应退火中的组织演化过程[31]
图7  Ti-(SiCp/Al)层状板材反应退火中的组织演化过程[32]
图8  TiAl片层组织的形态及TiAl基体和TiB2颗粒的界面结构[31]
图9  微叠层TiB2-TiAl复合材料板不同区域的纳米压痕实验结果[31]
图10  微叠层TiB2-TiAl复合材料板的力学性能及室温和750 ℃下的拉伸断口形貌[31]
图11  (Ti2AlC+Ti3AlC)-TiAl层状材料的三点弯曲实验结果及增韧机制[32]
图12  (Ti2AlC+Ti3AlC)-TiAl层状材料高温拉伸断口侧面形貌[32]
[1] Klassen T, Suryanarayana C, Bormann R.Low-temperature superplasticity in ultrafine-grained Ti5Si3-TiAl composites[J]. Scr. Mater., 2008, 59: 455
[2] Liu Y L, Liu L M, Wang S Q, et al.First-principles study of shear deformation in TiAl and Ti3Al[J]. Intermetallics, 2007, 15: 428
[3] Loria E A.Gamma titanium aluminides as prospective structural materials[J]. Intermetallics, 2000, 8: 1339
[4] Yu H L, Tieu A K, Lu C, et al.A deformation mechanism of hard metal surrounded by soft metal during roll forming[J]. Sci. Rep., 2014, 4: 5017
[5] Du Y, Fan G H, Yu T, et al.Effects of interface roughness on the annealing behaviour of laminated Ti-Al composite deformed by hot rolling[J]. IOP Conf. Ser.: Mater. Sci. Eng., 2015, 89: 012021
[6] Peng L M, Li Z, Li H.Effects of microalloying and ceramic particulates on mechanical properties of TiAl-based alloys[J]. J. Mater. Sci., 2006, 41: 7524
[7] Paul J D H, Appel F, Wagner R. The compression behaviour of niobium alloyed γ-titanium alumindies[J]. Acta Mater., 1998, 46: 1075
[8] Kawabata T, Tamura T, Izumi O.Effect of Ti/Al ratio and Cr, Nb, and Hf additions on material factors and mechanical properties in TiAl[J]. Metall. Trans., 1993, 24A: 141
[9] Park H S, Nam S W, Kim N J, et al.Refinement of the lamellar structure in TiAl-based intermetallic compound by addition of carbon[J]. Scr. Mater., 1999, 41: 1197
[10] Hecht U, Witusiewicz V, Drevermann A, et al.Grain refinement by low boron additions in niobium-rich TiAl-based alloys[J]. Intermetallics, 2008, 16: 969
[11] Muto S, Yamanaka T, Johnson D R, et al. Effects of refractory metals on microstructure and mechanical properties of directionally-solidified TiAl alloys [J]. Mater. Sci. Eng., 2002, A329-331: 424
[12] Ding X F, Lin J P, Zhang L Q, et al.Microstructural control of TiAl-Nb alloys by directional solidification[J]. Acta Mater., 2012, 60: 498
[13] Lasalmonie A.Intermetallics: Why is it so difficult to introduce them in gas turbine engines?[J]. Intermetallics, 2006, 14: 1123
[14] Fang W B, Hu L X, He W X, et al.Microstructure and properties of a TiAl alloy prepared by mechanical milling and subsequent reactive sintering[J]. Mater. Sci. Eng., 2005, A403: 186
[15] Luo J G, Acoff V L.Using cold roll bonding and annealing to process Ti/Al multi-layered composites from elemental foils[J]. Mater. Sci. Eng., 2004, A379: 164
[16] Pang J C, Fan G H, Cui X P, et al.Mechanical properties of Ti-(SiCp/Al) laminated composite with nano-sized TiAl3 interfacial layer synthesized by roll bonding[J]. Mater. Sci. Eng., 2013, A582: 294
[17] Pang J C, Fan G H, Cui X P, et al.Microstructure evolution of in situ (Ti3AlC + Ti5Si3)/Ti3Al composite sheet with a novel quasi-continuous chain reinforcement distribution architecture prepared by using roll bonding and reaction annealing[J]. J. Mater. Sci. Technol., 2013, 29: 1191
[18] Luo J G, Acoff V L.Processing gamma-based TiAl sheet materials by cyclic cold roll bonding and annealing of elemental titanium and aluminum foils[J]. Mater. Sci. Eng., 2006, A433: 334
[19] Wang Q W, Fan G H, Geng L, et al.A novel fabrication route to microlaminated TiB2-NiAl composite sheet with {111}<μνω> texture by roll bonding and annealing treatment[J]. Intermetallics, 2013, 37: 46
[20] Wu H, Cui X P, Geng L, et al.Fabrication and characterization of in-situ TiAl matrix composite with controlled microlaminated architecture based on SiC/Al and Ti system[J]. Intermetallics, 2013, 43: 8
[21] Wu H, Fan G H, Cui X P, et al.A novel approach to accelerate the reaction between Ti and Al[J]. Micron, 2014, 56: 49
[22] Mishin Y, Herzig C.Diffusion in the Ti-Al system[J]. Acta Mater., 2000, 48: 589
[23] He Y H, Jiang Y, Xu N P, et al.Fabrication of Ti-Al micro/nanometer-sized porous alloys through the Kirkendall effect[J]. Adv. Mater., 2007, 19: 2102
[24] Cui X P, Fan G H, Geng L, et al.Growth kinetics of TiAl3 layer in multi-laminated Ti-(TiB2/Al) composite sheets during annealing treatment[J]. Mater. Sci. Eng., 2012, A539: 337
[25] Wu H, Jin B C, Geng L, et al.Ductile-phase toughening in TiBw/Ti-Ti3Al metallic-intermetallic laminate composites[J]. Metall. Mater. Trans., 2015, 46A: 3803
[26] Van Loo F J J, Rieck G D. Diffusion in the titanium-aluminium system—I. Between solid Al and Ti or Ti-Al alloys[J]. Acta Metall., 1973, 21: 61
[27] Xu L, Cui Y Y, Hao Y L, et al. Growth of intermetallic layer in multi-laminated Ti/Al diffusion couples [J]. Mater. Sci. Eng., 2006, A435-436: 638
[28] Fu E K Y, Rawlings R D, McShane H B. Reaction synthesis of titanium aluminides[J]. J. Mater. Sci., 2001, 36: 5537
[29] Yao W, Wu A P, Zou G S, et al.Formation process of the bonding joint in Ti/Al diffusion bonding[J]. Mater. Sci. Eng., 2008, A480: 456
[30] Wu H, Fan G H, Jin B C, et al.Fabrication and mechanical properties of TiBw/Ti-Ti(Al) laminated composites[J]. Mater. Des., 2016, 89: 697
[31] Cui X P, Fan G H, Geng L, et al.Fabrication of fully dense TiAl-based composite sheets with a novel microlaminated microstructure[J]. Scr. Mater., 2012, 66: 276
[32] Wu H, Fan G H, Cui X P, et al.Mechanical properties of (Ti2AlC+Ti3AlC)-TiAl ceramic-intermetallic laminate (CIL) composites[J]. Mater. Sci. Eng., 2013, A585: 439
[33] Martin R, Kampe S L, Marte J S, et al.Microstructure/processing relationships in reaction-synthesized titanium aluminide intermetallic matrix composites[J]. Metall. Mater. Trans., 2002, 33A: 2747
[34] Yang R, Cui Y Y, Dong L M, et al.Alloy development and shell mould casting of gamma TiAl[J]. J. Mater. Process. Technol., 2003, 135: 179
[35] Perez-Bravo M, Madariaga I, Ostolaza K, et al.Microstructural refinement of a TiAl alloy by a two step heat treatment[J]. Scr. Mater., 2005, 53: 1141
[36] Wang J N, Xie K.Grain size refinement of a TiAl alloy by rapid heat treatment[J]. Scr. Mater., 2000, 43: 441
[37] Jakob A, Speidel M O.Microstructure and tensile properties of TiAl compounds formed by reactive foil metallurgy[J]. Mater. Sci. Eng., 1994, A189: 129
[38] Chaudhari G P, Acoff V L.Titanium aluminide sheets made using roll bonding and reaction annealing[J]. Intermetallics, 2010, 18: 472
[39] Court S A, Vasudevan V K, Fraser H L.Deformation mechanisms in the intermetallic compound TiAl[J]. Philos. Mag., 1990, 61A: 141
[40] Appel F, Wagner R.Microstructure and deformation of two-phase γ-titanium aluminides[J]. Mater. Sci. Eng., 1998, R22: 187
[41] Liu C T, Schneibel J H, Maziasz P J, et al.Tensile properties and fracture toughness of TiAl alloys with controlled microstructures[J]. Intermetallics, 1996, 4: 429
[42] Cui X P, Geng L, Fang K, et al.TiAl-based composite sheet with multi-layer distributed reinforcement prepared by solid-liquid reaction[J]. Acta Metall. Sin., 2013, 49: 1462(崔喜平, 耿林, 方堃等. 固液反应法制备增强体层状分布的TiAl基复合材料板[J]. 金属学报, 2013, 49: 1462)
[43] Bai H, Walsh F, Gludovatz B, et al.Bioinspired hydroxyapatite/poly(methyl methacrylate) composite with a nacre-mimetic architecture by a bidirectional freezing method[J]. Adv. Mater., 2016, 28: 50
[44] Bouville F, Maire E, Meille S, et al.Strong, tough and stiff bioinspired ceramics from brittle constituents[J]. Nat. Mater., 2014, 13: 508
[45] Koseki T, Inoue J, Nambu S.Development of multilayer steels for improved combinations of high strength and high ductility[J]. Mater. Trans., 2014, 55: 227
[46] Launey M E, Munch E, Alsem D H, et al.A novel biomimetic approach to the design of high-performance ceramic-metal composites[J]. J. Roy. Soc. Interface, 2010, 7: 741
[47] Launey M E, Ritchie R O.On the fracture toughness of advanced materials[J]. Adv. Mater., 2009, 21: 2103
[48] Froes F H, Suryanarayana C, Eliezer D.Synthesis, properties and applications of titanium aluminides[J]. J. Mater. Sci., 1992, 27: 5113
[49] Messerschmidt U, Bartsch M, Guder S, et al.Dynamic dislocation behaviour in the intermetallic compounds NiAl, TiAl and MoSi2[J]. Intermetallics, 1998, 6: 729
[50] Yamaguchi M, Inui H, Ito K.High-temperature structural intermetallics[J]. Acta Mater., 2000, 48: 307
[1] 马宗义, 肖伯律, 张峻凡, 朱士泽, 王东. 航天装备牵引下的铝基复合材料研究进展与展望[J]. 金属学报, 2023, 59(4): 457-466.
[2] 马国楠, 朱士泽, 王东, 肖伯律, 马宗义. SiC颗粒增强Al-Zn-Mg-Cu复合材料的时效行为和力学性能[J]. 金属学报, 2023, 59(12): 1655-1664.
[3] 姜江, 郝世杰, 姜大强, 郭方敏, 任洋, 崔立山. NiTi-Nb原位复合材料的准线性超弹性变形[J]. 金属学报, 2023, 59(11): 1419-1427.
[4] 沈莹莹, 张国兴, 贾清, 王玉敏, 崔玉友, 杨锐. SiCf/TiAl复合材料界面反应及热稳定性[J]. 金属学报, 2022, 58(9): 1150-1158.
[5] 陈玉勇, 叶园, 孙剑飞. TiAl合金板材轧制研究现状[J]. 金属学报, 2022, 58(8): 965-978.
[6] 谷瑞成, 张健, 张明阳, 刘艳艳, 王绍钢, 焦大, 刘增乾, 张哲峰. 三维互穿结构SiC晶须骨架增强镁基复合材料制备及其力学性能[J]. 金属学报, 2022, 58(7): 857-867.
[7] 田妮, 石旭, 刘威, 刘春城, 赵刚, 左良. 预拉伸变形对欠时效7N01铝合金板材疲劳断裂的影响[J]. 金属学报, 2022, 58(6): 760-770.
[8] 潘成成, 张翔, 杨帆, 夏大海, 何春年, 胡文彬. 三维石墨烯/Cu复合材料在模拟海水环境中的腐蚀和空蚀行为[J]. 金属学报, 2022, 58(5): 599-609.
[9] 王浩伟, 赵德超, 汪明亮. 原位自生TiB2/Al基复合材料的腐蚀防护技术研究现状[J]. 金属学报, 2022, 58(4): 428-443.
[10] 张雷, 施韬, 黄火根, 张培, 张鹏国, 吴敏, 法涛. 铀基非晶复合材料的相分离与凝固序列研究[J]. 金属学报, 2022, 58(2): 225-230.
[11] 陈润, 王帅, 安琦, 张芮, 刘文齐, 黄陆军, 耿林. 热挤压与热处理对网状TiBw/TC18复合材料组织及性能的影响[J]. 金属学报, 2022, 58(11): 1478-1488.
[12] 范根莲, 郭峙岐, 谭占秋, 李志强. 金属材料的构型化复合与强韧化[J]. 金属学报, 2022, 58(11): 1416-1426.
[13] 聂金凤, 伍玉立, 谢可伟, 刘相法. Al-AlN异构纳米复合材料的组织构型与热稳定性[J]. 金属学报, 2022, 58(11): 1497-1508.
[14] 赵乃勤, 郭斯源, 张翔, 何春年, 师春生. 基于增强相构型设计的石墨烯/Cu复合材料研究进展[J]. 金属学报, 2021, 57(9): 1087-1106.
[15] 赵宇宏, 景舰辉, 陈利文, 徐芳泓, 侯华. 装甲防护陶瓷-金属叠层复合材料界面研究进展[J]. 金属学报, 2021, 57(9): 1107-1125.