Please wait a minute...
金属学报  2019, Vol. 55 Issue (1): 87-100    DOI: 10.11900/0412.1961.2018.00292
  本期目录 | 过刊浏览 |
综述:SiC/Al界面反应与界面结构演变规律及机制
邱丰, 佟昊天, 沈平, 丛晓霜, 王轶, 姜启川()
吉林大学材料科学与工程学院 长春 130025
Overview: SiC/Al Interface Reaction and Interface Structure Evolution Mechanism
Feng QIU, Haotian TONG, Ping SHEN, Xiaoshuang CONG, Yi WANG, Qichuan JIANG()
Department of Materials Science and Engineering, Jilin University, Changchun 130025, China
全文: PDF(2627 KB)   HTML
摘要: 

高温制备过程中熔融Al与SiC直接接触,二者间界面反应发生的可能性与多向性直接影响复合材料的界面结合状态。全面了解Al和SiC之间的界面结合、界面反应、界面结构等对于提高材料性能有着极其重要的作用。尽管人们对Al及其合金与SiC之间的润湿性和界面反应的研究很多,但很多结论仍存在分歧,且对Al与SiC真实润湿性的认识不够全面。Al与SiC之间界面反应发生的反应程度与反应时间、温度有很大关系,但是对于反应参数与反应程度之间的具体对应关系还没有系统的综述。合金元素的添加可以减弱界面反应的发生,然而在不同反应条件下,所添加合金元素的量与界面反应程度的关系,以及合金元素对于界面反应的影响机制还没有明确报道。本文系统地综述在确定的反应时间与反应温度条件下的界面反应、界面产物以及反应产物演变规律及机制等,Al以及添加不同合金元素的合金与SiC界面情况及界面润湿行为影响机制。从界面润湿、界面反应以及界面产物角度,为制备复合材料过程中所选择的工艺参数提供实验依据。

关键词 SiC/Al铝基复合材料界面反应界面结构润湿行为    
Abstract

During the high-temperature melting process, Al is in full contact with SiC. The interface bonding properties of composites are closely related to the possibility and multi-directionality of interface reaction between them. A comprehensive understanding of the interfacial bonding, interfacial reaction, and interface structure between Al and SiC is of great significance for improving the material properties.There have been many researches on the wettability and interface reaction between Al or its alloys and SiC. However, there are still some differences and disputes on some issues, and the understanding of the true wettability of Al and SiC is not systematic enough. Reaction time and temperature have a great influence on the degree of interface reaction between Al and SiC, but there is still no systematic review on the specific relationship between reaction parameters and reaction degree. The addition of alloying elements can weaken the occurrence of interfacial reactions. However, under different reaction conditions, the relationship between the amount of alloying elements added and the reaction degree, and the mechanism of action of alloying elements on interface reaction have not been clearly reported. This article systematically reviews the interfacial reactions, interfacial products and reaction product evolution rules and mechanisms under specific reaction conditions, Al and the addition of different alloying elements to the SiC interface and interface wetting behavior. From the aspects of interfacial wetting, interfacial reaction and interfacial product, this article provided experimental data, theoretical references for the selection of process parameters during the preparation of composite.

Key wordsSiC/Al    aluminum matrix composite    interfacial reaction    interface structure    wetting behavior
收稿日期: 2018-06-29      出版日期: 2018-11-15
ZTFLH:  TB333  
基金资助:国家重点研发计划项目No.2017YFB0703101
作者简介:

作者简介 邱 丰,男,1980年生,教授,博士

引用本文:

邱丰, 佟昊天, 沈平, 丛晓霜, 王轶, 姜启川. 综述:SiC/Al界面反应与界面结构演变规律及机制[J]. 金属学报, 2019, 55(1): 87-100.
Feng QIU, Haotian TONG, Ping SHEN, Xiaoshuang CONG, Yi WANG, Qichuan JIANG. Overview: SiC/Al Interface Reaction and Interface Structure Evolution Mechanism. Acta Metall, 2019, 55(1): 87-100.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2018.00292      或      http://www.ams.org.cn/CN/Y2019/V55/I1/87

图1  Si—C双原子层结构及6H-SiC晶体结构示意图
图2  973~1173 K温度范围内熔融Al在6H-SiC单晶Si终结面和C终结面上接触角随时间的变化[21]
图3  1173 K时Al/多晶SiC与Al/SiO2体系接触角随时间变化曲线对比[20]
图4  Al-Si/SiC初始及(准)平衡黏着功的实验值与房鑫[49]所计算理论值的比较
图5  Al-Cu/SiC初始及(准)平衡黏着功的实验值与房鑫[49]所计算理论值的比较
图6  Al-Mg/SiC和Al-Mg/SiCox初始及(准)平衡黏着功的实验值与房鑫[49]所计算理论值的比较
图7  Al-Ti/SiC初始及(准)平衡黏着功的实验值与房鑫[49]所计算理论值的比较
[1] Taya M, Arsenault R J.A comparison between a shear lag type model and an eshelby type model in predicting the mechanical properties of a short fiber composite[J]. Scr. Metall., 1987, 21: 349
doi: 10.1016/0036-9748(87)90227-4
[2] Luo C P, Sui X D, Ouyang L Z, et al.Crvstallographic orientation relationship between SiC and Al in SiCp/Al-Si composites[J]. Acta Metall. Sin., 1999, 35: 343(罗承萍, 隋贤栋, 欧阳柳章等. SiCp/Al-Si复合材料中SiC/Al的晶体学位向关系[J]. 金属学报, 1999, 35: 343)
[3] Lü W J, Bian Y J, Zhang D, et al.Growth mechanism of reinforcement in in situ processed TiC/Ti composites[J]. Acta Metall. Sin., 1999, 35: 536(吕维洁, 卞玉君,张荻等. 原位合成TiC/Ti基复合材料增强体的生长机制[J]. 金属学报, 1999, 35: 536)
doi: 10.3321/j.issn:0412-1961.2000.01.023
[4] Fan G L, Yu Z Y, Tan Z Q, et al.Evolution, control, and effects of interface in CNT/Al composites: A review[J]. Acta Metall. Sin.(Engl. Lett.), 2014, 27: 839
doi: 10.1007/s40195-014-0137-0
[5] Qian F.An investigation on fabrication of SiCp/Al composite materials with pressureless infiltration techniques [D]. Nanjing: Nanjing University of Science and Technology, 2008(钱凤. 无压浸渗法制备SiCp/Al复合材料的研究 [D]. 南京: 南京理工大学, 2008)
[6] Nie J H, Fan J Z, Zhang S M, et al.Tensile and fracture properties of 15 vol% SiCp/2009Al composites fabricated by hot isostatic pressing and hot extrusion processes[J]. Acta Metall. Sin.(Engl. Lett.), 2014, 27: 875
doi: 10.1007/s40195-014-0127-2
[7] Shi Z L, Ochiai S, Gu M Y, et al.Interfacial microstructure evolution in aluminium matrix composites reinforced with unoxidized and oxidized SiC particles[J]. Surf. Interface Anal., 2001, 31: 375
doi: 10.1002/sia.1064
[8] Gupta M, Surappa M K, Qin S.Effect of interfacial characteristics on the failure-mechanism mode of a SiC reinforced A1 based metal-matrix composite[J]. J. Mater. Process. Technol., 1997, 67: 94
doi: 10.1016/S0924-0136(96)02825-7
[9] Rado C, Kalogeropoulou S, Eustathopoulos N.Bonding and wetting in non-reactive metal/SiC systems: Weak or strong interfaces[J]. Mater. Sci. Eng., 2000, A276: 195
doi: 10.1016/S0921-5093(99)00274-9
[10] Luo Z P, Song Y G, Zhang S Q.A TEM study of the microstructure of SiCP/Al composite prepared by pressureless infiltration method[J]. Scr. Mater., 2001, 45: 1183
doi: 10.1016/S1359-6462(01)01148-4
[11] Shi Z L, Gu M Y, Liu J Y, et al.Interfacial reaction between the oxidized SiC particles and Al-Mg alloy[J]. Chin. Sci. Bull., 2001, 46: 1161(施忠良, 顾明元, 刘俊友等. 氧化的碳化硅与铝镁合金之间的界面反应[J]. 科学通报, 2001, 46: 1161)
doi: 10.3321/j.issn:0023-074X.2001.14.005
[12] Wu G H, Su J, Gou H S, et al.Study on graphite fiber and Ti particle reinforced Al composite[J]. J. Mater. Sci., 2009, 44: 4776
doi: 10.1007/s10853-009-3718-y
[13] Song M H, Wu G H, Yang W S, et al.Mechanical properties of Cf/Mg composites fabricated by pressure infiltration method[J]. J. Mater. Sci. Technol., 2010, 26: 931
doi: 10.1016/S1005-0302(10)60150-8
[14] Cong X S.Wettability of silicon carbide by molten aluminum or aluminum alloys and their interfacial microstructures [D]. Changchun: Jilin University, 2014(丛晓霜. Al及其合金与多晶α-SiC陶瓷的润湿及界面结构 [D]. 长春: 吉林大学, 2014)
[15] Wang W M, Pan F S, Sun X W, et al.Advance in research on interfacial reaction in SiCp/Al composites[J]. J. Chongqing Univ.: Nat. Sci. Ed., 2004, 27: 108(王文明, 潘复生, 孙旭炜等. SiCp/Al复合材料界面反应研究现状[J]. 重庆大学学报: 自然科学版, 2004, 27: 108)
doi: 10.3969/j.issn.1000-582X.2004.03.027
[16] Viala J C, Fortier P, Bouix J.Stable and metastable phase equilibria in the chemical interaction between aluminium and silicon carbide[J]. J. Mater. Sci., 1990, 25: 1842
doi: 10.1007/BF01045395
[17] Viala J C, Bosselet F, Laurent F, et al.Mechanism and kinetics of the chemical interaction between liquid aluminium and silicon-carbide single crystals[J]. J. Mater. Sci., 1993, 28: 5301
doi: 10.1007/BF00570081
[18] Peteves S D, Tambuyser P, Helbach P, et al.Microstructure and microchemistry of the Al/SiC interface[J]. J. Mater. Sci., 1990, 25: 3765
doi: 10.1007/BF00575416
[19] Iseki T, Kameda T, Maruyama T.Interfacial reactions between SiC and aluminium during joining[J]. J. Mater. Sci., 1984, 19: 1692
doi: 10.1007/BF00563067
[20] Cong X S, Shen P, Wang Y, et al.Wetting of polycrystalline SiC by molten Al and Al-Si alloys[J]. Appl. Surf. Sci., 2014, 317: 140
doi: 10.1016/j.apsusc.2014.08.055
[21] Shen P, Wang Y, Ren L H, et al.Influence of SiC surface polarity on the wettability and reactivity in an Al/SiC system[J]. Appl. Surf. Sci., 2015, 355: 930
doi: 10.1016/j.apsusc.2015.07.164
[22] Laurent V, Chatain D, Eustathopoulos N.Wettability of SiC by aluminium and Al-Si alloys[J]. J. Mater. Sci., 1987, 22: 244
doi: 10.1007/BF01160579
[23] Laurent V, Rado C, Eustathopoulos N.Wetting kinetics and bonding of Al and Al alloys on α-SiC[J]. Mater. Sci. Eng., 1996, A205: 1
doi: 10.1016/0921-5093(95)09896-8
[24] Ferro A C, Derby B.Wetting behaviour in the Al-Si/SiC System: Interface reactions and solubility effects[J]. Acta Metall. Mater., 1995, 43: 3061
doi: 10.1016/0956-7151(95)00014-M
[25] Hashim J, Looney L, Hashmi M S J. The wettability of SiC particles by molten aluminium alloy[J]. J. Mater. Process. Technol., 2001, 119: 324
doi: 10.1016/S0924-0136(01)00975-X
[26] Landry K, Rado C, Eustathopoulos N.Influence of interfacial reaction rates on the wetting driving force in metal/ceramic systems[J]. Metall. Mater. Trans., 1996, 27A: 3181
doi: 10.1007/BF02663868
[27] Wang Y.Wettability of SiC single crystal and carbon nanotubes by molten aluminum and their interfacial microstructures [D]. Changchun: Jilin University, 2015(王轶. Al在单晶SiC和碳纳米管上的润湿性及界面结构 [D]. 长春: 吉林大学, 2015)
[28] Liu J S.Wettability of silicon carbide and silica by molten aluminum alloys and their interfacial microstructures [D]. Changchun: Jilin University, 2016(刘精深. Al合金与SiC和SiO2的润湿性及界面结构 [D]. 长春: 吉林大学, 2016)
[29] Dezellus O, Hodaj F, Eustathopoulos N.Chemical reaction-limited spreading: The triple line velocity versus contact angle relation[J]. Acta Mater., 2002, 50: 4741
doi: 10.1016/S1359-6454(02)00309-9
[30] Cassie A B D. Contact angle[J]. Discuss. Faraday Soc., 1948, 3: 11
doi: 10.1039/df9480300011
[31] León C, Drew R.The influence of nickel coating on the wettability of aluminum on ceramics[J]. Composites, 2002, 33A: 1429
doi: 10.1016/S1359-835X(02)00161-6
[32] Zhou J, Drużdżel A T, Duszczyk J.The effect of extrusion parameters on the fretting wear resistance of Al-based composites produced via powder metallurgy[J]. J. Mater. Sci., 1999, 34: 5089
doi: 10.1023/A:1004761116824
[33] Shi Z, Ochiai S, Gu M, et al.The formation and thermostability of MgO and MgAl2O4 nanoparticles in oxidized SiC particle-reinforced Al-Mg composites[J]. Appl. Phys., 2002, 74A: 97
doi: 10.1007/s003390100844
[34] Xu X Y, Wang H Y, Zha M, et al.Effects of Ti, Si, Mg and Cu additions on interfacial properties and electronic structure of Al(111)/4H-SiC(0001) interface: A first-principles study[J]. Appl. Surf. Sci., 2018, 437: 103
doi: 10.1016/j.apsusc.2017.12.103
[35] Beer S Z.Liquid Metals: Chemistry and Physics[M]. New York: Marcel Dekker, 1972: 127
[36] Lee J C, Ahn J P, Shim J H, et al.Interfacial phenomena in the SiC/2024Al composite: II Tailoring the interface[J]. Korea Inst. Met. Mater., 2000, 38: 322
[37] Pai B C, Ramani G, Pillai R M, et al.Role of magnesium in cast aluminium alloy matrix composites[J]. J. Mater. Sci., 1995, 30: 1903
doi: 10.1007/BF00353012
[38] Guo J.The effects and mutual action of alloy elements and SiC particulate surface condition on the interface of SiCp/Al composites [D]. Zhengzhou: Zhengzhou University, 2003(郭建. 合金元素及增强体表面状况对SiCp/Al复合材料界面的影响及其交互作用 [D]. 郑州: 郑州大学, 2003)
[39] Guo J, Shen N F.Control of detrimental interface reaction in SiCp/Al composite materials[J]. Mater. Sci. Eng., 2002, 20: 605(郭建, 沈宁福. SiC颗粒增强Al基复合材料中有害界面反应的控制[J]. 材料科学与工程, 2002, 20: 605)
doi: 10.3969/j.issn.1673-2812.2002.04.036
[40] Pech-Canul M I, Katz R N, Makhlouf M M, et al. The role of silicon in wetting and pressureless infiltration of SiCp preforms by aluminum alloys[J]. J. Mater. Sci., 2000, 35: 2167
doi: 10.1023/A:1004758305801
[41] Ramani G, Pillai R M, Pai B C, et al.Effect of mixing conditions and reactive elements on the porosity and dispersion of SiC particulate in cast Al-SiCp composites[J]. J. Mater. Sci., 1993, 12: 1117
doi: 10.1007/BF00420539
[42] Ferro A C, Derby B.Wetting behaviour in the Al-Si/SiC System: Interface reactions and solubility effects[J]. Acta Metall. Mater., 1995, 43: 3061
doi: 10.1016/0956-7151(95)00014-M
[43] Lee J C, Byun J Y, Park S B, et al.Prediction of Si contents to suppress the formation of Al4C3 in the SiCp/Al composite[J]. Acta Mater., 1998, 46: 1771
doi: 10.1016/S1359-6454(97)00465-5
[44] Fang X, Fan T X, Zhang D.Work of adhesion in Al/SiC composites with alloying element addition[J]. Metall. Mater. Trans., 2013, 44A: 5192
doi: 10.1007/s11661-013-1848-y
[45] Lee J C, Byun J Y, Oh C S, et al.Effect of various processing methods on the interfacial reactions in SiCp/2024 Al composites[J]. Acta Mater., 1997, 45: 5303
doi: 10.1016/S1359-6454(97)84851-3
[46] Han D S, Jones H, Atkinson H V.The wettability of silicon carbide by liquid aluminium: The effect of free silicon in the carbide and of magnesium, silicon and copper alloy additions to the aluminium[J]. J. Mater. Sci., 1993, 28: 2654
doi: 10.1007/BF00356199
[47] Candan E.Effect of alloying elements to aluminium on the wettability of Al/SiC system[J]. Turk. J. Eng. Environ. Sci., 2002, 26: 1
[48] Rodríguez-Reyes M, Pech-Canul M I, Rendón-Angeles J C, et al. Limiting the development of Al4C3 to prevent degradation of Al/SiCp composites processed by pressureless infiltration[J]. Compos. Sci. Technol., 2006, 66: 1056
doi: 10.1016/j.compscitech.2005.07.025
[49] Fang X.Thoeretical prediction of interfacial reaction and work of adhesion in SiC/Al composites [D]. Shanghai: Shanghai Jiao Tong University, 2013(房鑫. SiC/Al复合材料界面反应与粘着功理论预测研究 [D]. 上海: 上海交通大学, 2013)
[50] Lee J C, Park S B, Seok H K, et al.Prediction of Si contents to suppress the interfacial reaction in the SiCp/2014 Al composite[J]. Acta Mater., 1998, 46: 2635
doi: 10.1016/S1359-6454(97)00465-5
[51] Li J G, Coudurier L, Eustathopoulos N.Work of adhesion and contact-angle isotherm of binary alloys on ionocovalent oxides[J]. J. Mater. Sci., 1989, 24: 1109
doi: 10.1007/BF01148806
[52] Zhong W M, L'Espérance G, Suéry M. Interfacial reactions in Al-Mg (5083)/Al2O3p composites during fabrication and remelting[J]. Metall. Mater. Trans., 1995, 26A: 2625
[53] Ghosh P K, Ray S.Influence of annealing on the mechanical properties of compocast Al(Mg)-Al2O3 particulate composite[J]. J. Mater. Sci., 1993, 28: 3783
doi: 10.1007/BF00353179
[54] Sreekumar V M, Ravi K R, Pillai R M, et al.Thermodynamics and kinetics of the formation of Al2O3/MgAl2O4/MgO in Al-silica metal matrix composite[J]. Metall. Mater. Trans., 2008, 39A: 919
[55] Lee K B, Kim Y S, Kwon H.Fabrication of Al-3 Wt pct Mg matrix composites reinforced with Al2O3 and SiC particulates by the pressureless infiltration technique[J]. Metall. Mater. Trans., 1998, 29A: 3087
doi: 10.1007/s11661-998-0216-9
[56] Petitcorps Y L, Quenisset J M, Le Borgne G, et al.Segregation of magnesium in squeeze-cast aluminium matrix composites reinforced with alumina fibres[J]. Mater. Sci. Eng., 1991, A135: 37
doi: 10.1016/0921-5093(91)90533-S
[57] Hallstedt B, Ågren J, Liu Z K.Fibre-matrix interactions during fabrication of Al2O3 Mg metal matrix composites[J]. Mater. Sci. Eng., 1990, A129: 135
doi: 10.1016/0921-5093(90)90352-4
[58] Zuo R.The reaction and structure evolution at the interfaces of Al/Al alloy-SiC/SiCox [D]. Changchun: Jilin University, 2017(左蕊. Al/Al合金-SiC/SiCox界面反应与结构演变 [D]. 长春: 吉林大学, 2017)
[59] Ribes H, Suéry M, L'esperance Q, et al. Microscopic examination of the interface region in 6061-Al/SiC composites reinforced with as-received and oxidized SiC particles[J]. Metall. Mater. Trans., 1990, 21A: 2489
doi: 10.1007/bf02646993
[60] Fishkis M.Interfaces and fracture surfaces in Saffil/Al-Mg-Cu metal-matrix composites[J]. J. Mater. Sci., 1991, 26: 2651
doi: 10.1007/BF02387733
[61] Lee J C, Lee H I, Ahn J P, et al.Modification of the interface in SiC/Al composites[J]. Metall. Mater. Trans., 2000, 31A: 2361
doi: 10.1007/s11661-000-0151-x
[62] Ma X C, Wu J B.An investigation on wettability and interfacial phenomena of Al-SiC system[J]. Mater. Sci. Eng., 1994, 12(1): 37(马晓春, 吴锦波. Al-SiC系润湿性与界面现象的研究[J]. 材料科学与工程, 1994, 12(1): 37)
[63] Pan F S, Zhang J, Chen H, et al.Effect of rare earth additions on the wettability of An-Al-Zn-Mg-Cu/Al2O3 system[J]. Acta Mater. Compos. Sin., 1998, 15(1): 46(潘复生, 张静, 陈晖等. 稀土对Al-Zn-Mg-Cu/Al2O3陶瓷界面润湿性的影响[J]. 复合材料学报, 1998, 15(1): 46)
[64] Carotenuto G, Gallo A, Nicolais L.Degradation of SiC particles in aluminium-based composites[J]. J. Mater. Sci., 1994, 29: 4967
doi: 10.1007/BF01151086
[65] Eustathopoulos N, Coudurier L. Adsorption and wettability in metal/ceramic system [A]. Capillarity Today [C]. Berlin: Springer, 1991, vol.386: 15
[66] Saiz E, Tomsia A P.Atomic dynamics and Marangoni films during liquid-metal spreading[J]. Nat. Mater., 2004, 3: 903
doi: 10.1038/nmat1252 pmid: 15543152
[67] Tanaka S, Kohyama M.Ab initio calculations of 3C-SiC[111]/Ti polar interfaces [A]. 2000 International Semiconducting and Insulating Materials Conference[C]. Canberra, ACT, Australia, Australia: IEEE, 2000: 299
[68] Zhang L J, Yang D L, Qiu F, et al.Effects of reinforcement surface modification on the microstructures and tensile properties of SiCp/Al2014 composites[J]. Mater. Sci. Eng., 2015, A624: 102
doi: 10.1016/j.msea.2014.11.066
[69] Shaga A.Fabrication of nacre-inspired Al alloy/SiC lamellar composites and their microstructures and properties [D]. Changchun: Jilin University, 2016(阿拉腾沙嘎. 仿珍珠贝Al合金/SiC层状复合材料的制备、组织与性能 [D]. 长春: 吉林大学, 2016)
[70] Zhang H, Shen P, Shaga A, et al.Preparation of nacre-like composites by reactive infiltration of a magnesium alloy into porous silicon carbide derived from ice template[J]. Mater. Lett., 2016, 183: 299
doi: 10.1016/j.matlet.2016.07.126
[71] Shen P, Xi J W, Fu Y J, et al.Preparation of high-strength Al-Mg-Si/Al2O3 composites with lamellar structures using freeze casting and pressureless infiltration techniques[J]. Acta Metall. Sin.(Engl. Lett.), 2014, 27: 944
doi: 10.1007/s40195-014-0157-9
[72] Shaga A, Shen P, Sun C, et al.Lamellar-interpenetrated Al-Si-Mg/SiC composites fabricated by freeze casting and pressureless infiltration[J]. Mater. Sci. Eng., 2015, A630: 78
doi: 10.1016/j.msea.2015.02.012
[73] Shaga A, Shen P, Guo R F, et al.Effects of oxide addition on the microstructure and mechanical properties of lamellar SiC scaffolds and Al-Si-Mg/SiC composites prepared by freeze casting and pressureless infiltration[J]. Ceram. Int., 2016, 42: 9653
doi: 10.1016/j.ceramint.2016.03.052
[1] 陶然, 赵玉涛, 陈刚, 怯喜周. 电磁场下原位合成纳米ZrB2 np/AA6111复合材料组织与性能研究[J]. 金属学报, 2019, 55(1): 160-170.
[2] 王晨, 王贝贝, 薛鹏, 王东, 倪丁瑞, 陈礼清, 肖伯律, 马宗义. SiCp/6092Al复合材料搅拌摩擦焊接头的疲劳行为研究[J]. 金属学报, 2019, 55(1): 149-159.
[3] 范同祥, 刘悦, 杨昆明, 宋健, 张荻. 碳/金属复合材料界面结构优化及界面作用机制的研究进展[J]. 金属学报, 2019, 55(1): 16-32.
[4] 赵乃勤, 刘兴海, 蒲博闻. 多维度碳纳米相增强铝基复合材料研究进展[J]. 金属学报, 2019, 55(1): 1-15.
[5] 丁浩, 崔喜平, 许长寿, 李爱滨, 耿林, 范国华, 陈俊锋, 孟松鹤. 连续玄武岩纤维增强铝基层状复合材料的制备与力学特性[J]. 金属学报, 2018, 54(8): 1171-1178.
[6] 刘晓云,王文广,王东,肖伯律,倪丁瑞,陈礼清,马宗义. 片层石墨尺寸对片层石墨/Al复合材料的强度和热导率的影响[J]. 金属学报, 2017, 53(7): 869-878.
[7] 赵宁,邓建峰,钟毅,殷录桥. 热迁移下Ni/Sn-xCu/Ni微焊点钎焊界面金属间化合物的演变[J]. 金属学报, 2017, 53(7): 861-868.
[8] 张志杰,黄明亮. Cu/Sn-52In/Cu微焊点液-固电迁移行为研究[J]. 金属学报, 2017, 53(5): 592-600.
[9] 靳鹏,隋然,李富祥,俞伟元,林巧力. 熔融6061/4043铝合金在TC4钛合金表面的反应润湿[J]. 金属学报, 2017, 53(4): 479-486.
[10] 常海,郑明毅,甘为民. 室温累积叠轧Mg/Al多层复合板材的界面表征[J]. 金属学报, 2017, 53(2): 220-226.
[11] 王尧,朱晓莹,刘贵民,杜军. Cu/Ni和Cu/Nb纳米多层膜的应变率敏感性[J]. 金属学报, 2017, 53(2): 183-191.
[12] 薛鹏, 张星星, 吴利辉, 马宗义. 搅拌摩擦焊接与加工研究进展*[J]. 金属学报, 2016, 52(10): 1222-1238.
[13] 王玉敏, 张国兴, 张旭, 杨青, 杨丽娜, 杨锐. 连续SiC纤维增强钛基复合材料研究进展*[J]. 金属学报, 2016, 52(10): 1153-1170.
[14] 江智,田艳红,丁苏. Sn3.5Ag0.5Cu纳米颗粒钎料制备及钎焊机理*[J]. 金属学报, 2016, 52(1): 105-112.
[15] 吴铭方,刘飞,王凤江,乔岩欣. 陶瓷基复合材料辅助脉冲电流液相扩散连接的界面反应及接头强化机制[J]. 金属学报, 2015, 51(9): 1129-1135.