Please wait a minute...
金属学报  2019, Vol. 55 Issue (1): 160-170    DOI: 10.11900/0412.1961.2018.00288
  本期目录 | 过刊浏览 |
电磁场下原位合成纳米ZrB2 np/AA6111复合材料组织与性能研究
陶然, 赵玉涛(), 陈刚, 怯喜周
江苏大学材料科学与工程学院 镇江 212013
Microstructure and Properties of In-Situ ZrB2 np/AA6111 Composites Synthesized Under an Electromagnetic Field
Ran TAO, Yutao ZHAO(), Gang CHEN, Xizhou KAI
School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
引用本文:

陶然, 赵玉涛, 陈刚, 怯喜周. 电磁场下原位合成纳米ZrB2 np/AA6111复合材料组织与性能研究[J]. 金属学报, 2019, 55(1): 160-170.
Ran TAO, Yutao ZHAO, Gang CHEN, Xizhou KAI. Microstructure and Properties of In-Situ ZrB2 np/AA6111 Composites Synthesized Under an Electromagnetic Field[J]. Acta Metall Sin, 2019, 55(1): 160-170.

全文: PDF(12855 KB)   HTML
摘要: 

采用电磁场调控技术和直接熔体反应技术成功制备出原位纳米ZrB2 np/AA6111复合材料,研究了电磁场对复合材料微观组织的影响,分析了磁场的调控机制和微观组织对拉伸性能的影响规律。结果表明,施加电磁场可分散颗粒团聚体、改善团聚体分布、细化纳米增强颗粒(50~100 nm)并使颗粒边角变圆润,基体与颗粒的界面结合良好,干净无杂质,位错与颗粒相互交缠且密度增加。当电磁频率为10 Hz时,其最佳抗拉强度为362 MPa,屈服强度为253 MPa,伸长率为25%,分别比未施加磁场的ZrB2 np/AA6111复合材料提高了38.7%、68.6%和28.7%。

关键词 铝基复合材料原位反应ZrB2纳米颗粒电磁场拉伸强度    
Abstract

6xxx alloys have become of particular interest in automotive structural applications as replacements for low carbon steels, mainly because of the increasing demand for the utilization of lighter materials in the automotive industry. However, the strength and formability of the 6xxx alloy are inferior to those of fully annealed low carbon steels, which is partially due to the different crystallographic textures of these two materials. In-situ nanoparticle-reinforced composites have always been extensively used due to their high modulus, high strength, specific stiffness and excellent comprehensive properties. However, traditional in-situ methods require long reaction time and high reaction temperatures, leading to further growth or agglomeration of the reinforcement particles and decreasing the mechanical properties. In this work, in-situ ZrB2/AA6111 composites were successfully prepared via an in-situ melt reaction with the assistance of an electromagnetic field. The effect of electromagnetic field on distribution, size and morphology of in-situ particles, interface structure between particles and matrix, and dislocation morphology in composites were characterized by XRD, OM, SEM and TEM. The action mechanism of electromagnetic field and the effect of microstructure on tensile strength were analyzed. The results indicated that with the assistance of electromagnetic field during in-situ reaction, the large particle clusters were broken into smaller clusters that were uniformly distributed in the matrix, the distribution of ZrB2 nanoparticles was diffused and homogeneous with the size decreasing to 50~100 nm, and the corners of the nanoparticles clearly became obtuse. In addition, the interface between the particles and the matrix was well bonded without any impurities. The uniformity of the ZrB2 nanoparticle distribution improved, resulting in dislocation propagation and entanglement. When electromagnetic frequency was 10 Hz, the optimal ultimate tensile strength (UTS), yield strength (YS) and elongation (El) of the composites prepared under the electromagnetic field were 362 MPa, 253 MPa and 25%, respectively, correspondingly increasing 38.7%, 68.6%and 28.7% over the respective properties of the ZrB2 np/AA6111 composite. These improvements were due to the Orowan strengthening, load transmitting strengthening, grain refinement strengthening, and dislocation strengthening caused by the nano-sized ZrB2 particles synthesized under the coupled electromagnetic and ultrasonic field. In addition, the Orowan strengthening contributed most to the improvement of properties.

Key wordsaluminium matrix composite    in-situ reaction    ZrB2 nanoparticle    electromagnetic field    tensile strength
收稿日期: 2018-06-29     
ZTFLH:  TB331  
基金资助:国家自然科学基金项目Nos.U1664254、51701085和51174098及江苏省研究生创新计划项目No.KYCX17_1767
作者简介:

作者简介 陶然,女,1991年生,博士生

图1  低频电磁场下原位合成铝基复合材料的装置原理图
Material Si Mg Fe Cu Mn Zn Cr Zr B Al
AA6111 0.76 0.75 0.20 0.78 0.25 0.1 0.10 - - Bal.
1%ZrB2/AA6111 0.78 0.80 0.23 0.78 0.20 0.1 0.12 2.5 0.70 Bal.
2%ZrB2/AA6111 0.80 0.81 0.21 0.78 0.23 0.1 0.12 4.2 1.18 Bal.
3%ZrB2/AA6111 0.82 0.79 0.18 0.78 0.20 0.1 0.12 6.5 2.89 Bal.
表1  AA6111合金及电场调控后原位ZrB2 np/AA6111复合材料的化学成分
图2  AA6111铝合金和原位ZrB2 np/AA6111复合材料的XRD谱
图3  不同颗粒体积分数的原位ZrB2 np/AA6111复合材料的OM像和晶粒尺寸分布图
图4  不同频率的电磁场调控原位ZrB2 np/AA6111复合材料的低倍SEM像
图5  不同频率的电磁场调控原位ZrB2 np/AA6111复合材料的颗粒高倍SEM像
图6  10 Hz电磁场调控下原位纳米颗粒的TEM像和电子衍射花样
图7  基体与颗粒界面的HRTEM像及I和II区的FFT花样
图8  原位ZrB2 np/AA6111复合材料中位错的形态和分布
图9  不同电磁场频率调控下原位ZrB2 np/AA6111复合材料的拉伸曲线和拉伸性能演变折线图
图10  不同频率的电磁场调控原位ZrB2 np/AA6111复合材料的断口表面SEM像
图11  ZrB2颗粒原位合成动力学过程示意图
图12  电磁场的熔体流动示意图
[1] Engler O, Sch?fer C, Brinkman H J.Crystal-plasticity simulation of the correlation of microtexture and roping in AA6xxx Al-Mg-Si sheet alloys for automotive applications[J]. Acta Mater., 2012, 60: 5217
[2] Kusters S, Seefeldt M, Van Houtte P.A fourier image analysis technique to quantify the banding behavior of surface texture components in AA6xxx aluminum sheet[J]. Mater. Sci. Eng. 2010, A527: 6239
[3] Li X, Tang J G, Zhang X M, et al.Effect of warm deformation on natural ageing and mechanical property of aluminum alloy 6061 sheets for automotive body[J]. Chin. J. Nonferrous Met., 2016, 26: 1(李翔, 唐建国, 张新明等. 温变形对汽车车身用6061铝合金自然时效及力学性能的影响[J]. 中国有色金属学报, 2016, 26: 1)
[4] Tamura S, Sumikawa S, Uemori T, et al.Experimental observation of elasto-plasticity behavior of type 5000 and 6000 aluminum alloy sheets[J]. Mater. Trans., 2011, 52: 255
[5] Macwan A, Kumar A, Chen D L.Ultrasonic spot welded 6111-T4 aluminum alloy to galvanized high-strength low-alloy steel: Microstructure and mechanical properties[J]. Mater. Des., 2017, 113: 284
[6] Karthik G M, Ram G D J, Kottada R S. Friction deposition of titanium particle reinforced aluminum matrix composites[J]. Mater. Sci. Eng., 2016, A653: 71
[7] Ramesh C S, Pramod S, Keshavamurthy R.A study on microstructure and mechanical properties of Al6061-TiB2 in-situ composites[J]. Mater. Sci. Eng., 2011, A528: 4125
[8] Lee I S, Hsu C J, Chen C F, et al.Particle-reinforced aluminum matrix composites produced from powder mixtures via friction stir processing[J]. Compos. Sci. Technol., 2011, 71: 693
[9] Zhang Q, Wang Q Z, Xiao B L, et al.Phases and elemental distributions in SiCp/Al-Cu-Mg composite fabricated by powder metallurgy[J]. Acta Metall. Sin., 2012, 48: 135(张琪, 王全兆, 肖伯律等. 粉末冶金制备SiCP/2009Al复合材料的相组成和元素分布[J]. 金属学报, 2012, 48: 135)
[10] Zhou L, Wang C Z, Zhang X X, et al.Finite element simulation of hot rolling process for SiCp/Al composite[J]. Acta Metall. Sin., 2015, 51: 889(周丽, 王唱舟, 张星星等. SiCp/Al复合材料热轧过程的有限元模拟[J]. 金属学报, 2015, 51: 889)
[11] Yu Z Q, Lin Z Q, Zhao Y X.Evaluation of fracture limit in automotive aluminium alloy sheet forming[J]. Mater. Des., 2007, 28: 203
[12] Yang Y, Lan J, Li X C.Study on bulk aluminum matrix nano-composite fabricated by ultrasonic dispersion of nano-sized SiC particles in molten aluminum alloy[J]. Mater. Sci. Eng., 2004, A380: 378
[13] Su H, Gao W L, Feng Z H, et al.Processing, microstructure and tensile properties of nano-sized Al2O3 particle reinforced aluminum matrix composites[J]. Mater. Des., 2012, 36: 590
[14] Tian K L, Zhao Y T, Jiao L, et al.Effects of in situ generated ZrB2 nano-particles on microstructure and tensile properties of 2024Al matrix composites[J]. J. Alloys Compd., 2014, 594: 1
[15] Yang R, Zhang Z Y, Zhao Y T, et al.Microstructure-property analysis of ZrB2/6061Al hierarchical nanocomposites fabricated by direct melt reaction[J]. Mater. Charact., 2016, 112: 51
[16] Tjong S C, Chen F.Wear behavior of as-cast ZnAl27/SiC particulate metal-matrix composites under lubricated sliding condition[J]. Metall. Mater. Trans., 1997, 28A: 1951
[17] Tsumekawa Y, Suzuki H, Okumiya M.Preparation of in-situ reinforced composites using ultrasonic vibration and selective incorporation of reinforcements by magneticfield[J]. Alum. Trans., 2000, 2: 1
[18] Agrawal S, Ghose A K, Chakrabarty I.Effect of rotary electromagnetic stirring during solidification of in-situ Al-TiB2 composites[J]. Mater. Des., 2016, 113: 195
[19] Garcia-Hinojosa J A, Gonzalez-Rivera C, Juárez I J A, et al. Effect of grain refinement treatment on the microstructure of cast Al-7Si-SiCp composites[J]. Mater. Sci. Eng., 2004, A386: 54
[20] Lu L, Lai M O, Chen F L.In situ preparation of TiB2 reinforced Al base composite[J]. Adv. Compos. Mater, 1997, 6: 299
[21] Yu J B, Ren Z M, Ren W L, et al.Solidification structure of eutectic Al-Si alloy under a high magnetic field-aid-electromagnetic vibration[J]. Acta Metall. Sin.(Engl. Lett.), 2009, 22: 191
[22] Arsenault R J, Shi N.Dislocation generation due to differences between the coefficients of thermal expansion[J]. Mater. Sci. Eng., 1986, 81: 175
[23] Lo S H J, Dionne S, Sahoo M, et al. Mechanical and tribological properties of zinc-aluminium metal-matrix composites[J]. J. Mater. Sci., 1992, 27: 5681
[24] Li J X, Wang L Q, Qin J N, et al.Effect of microstructure on high temperature properties of in situ synthesized (TiB+La2O3)/Ti composite[J]. Mater. Charact., 2012, 66: 93
[25] Park J G, Keum D H, Lee Y H.Strengthening mechanisms in carbon nanotube-reinforced aluminum composites[J]. Carbon, 2015, 95: 690
[26] Hsu C J, Chang C Y, Kao P W, et al.Al-Al3Ti nanocomposites produced in situ by friction stir processing[J]. Acta Mater., 2006, 54: 5241
[27] Sajjadi S A, Ezatpour H R, Beygi H.Microstructure and mechanical properties of Al-Al2O3 micro and nano composites fabricated by stir casting[J]. Mater. Sci. Eng., 2011, A528: 8765
[28] Kim W J, Hong S I, Lee J M, et al.Dispersion of TiC particles in an in situ aluminum matrix composite by shear plastic flow during high-ratio differential speed rolling[J]. Mater. Sci. Eng., 2013, A559: 325
[29] Gokhale A M, Deshpande N U, Denzer D K, et al.Relationship between fracture toughness, fracutre path, and microstructure of 7050 aluminum alloy: Part II. Multiple micromechanisms-based fracture toughness model[J]. Metall. Mater. Trans., 1998, 29A: 1203
[30] Srivatsan T S.Cyclic strain resistance and fracture behaviour of Al2O3-particulate-reinforced 2014 aluminium alloy metal-matrix composites[J]. Int. J. Fatigue, 1995, 17: 183
[31] Chen F, Mao F, Chen Z N, et al.Application of synchrotron radiation X-ray computed tomography to investigate the agglomerating behavior of TiB2 particles in aluminum[J]. J. Alloys Compd., 2015, 622: 831
[32] Jiao L, Zhao Y, Wu Y, et al.Microstructures of in-situ TiB2/7055Al composites by the ultrasonic and magnetic coupled field[J]. Rare Met. Mater. Eng., 2014, 43: 6
[33] Chen D B, Zhao Y T, Li G R, et al.Mechanism and kinetic model of in-situ TiB2/7055Al nanocomposites synthesized under high intensity ultrasonic field[J]. J. Wuhan Univ. Technol. Mater. Sci. Ed., 2011, 26: 920
[34] Vives C, Perry C.Effects of electromagnetic stirring during the controlled solidification of tin[J]. Int. J. Heat Mass Transfer, 1986, 29: 21
[1] 马宗义, 肖伯律, 张峻凡, 朱士泽, 王东. 航天装备牵引下的铝基复合材料研究进展与展望[J]. 金属学报, 2023, 59(4): 457-466.
[2] 聂金凤, 伍玉立, 谢可伟, 刘相法. Al-AlN异构纳米复合材料的组织构型与热稳定性[J]. 金属学报, 2022, 58(11): 1497-1508.
[3] 唐海燕, 刘锦文, 王凯民, 肖红, 李爱武, 张家泉. 连铸中间包加热技术及其冶金功能研究进展[J]. 金属学报, 2021, 57(10): 1229-1245.
[4] 毕胜, 李泽琛, 孙海霞, 宋保永, 刘振宇, 肖伯律, 马宗义. 高能球磨结合粉末冶金法制备碳纳米管增强7055Al复合材料的微观组织和力学性能[J]. 金属学报, 2021, 57(1): 71-81.
[5] 任忠鸣,雷作胜,李传军,玄伟东,钟云波,李喜. 电磁冶金技术研究新进展[J]. 金属学报, 2020, 56(4): 583-600.
[6] 董虎林,包海萍,彭建洪. TiC含量对铁基复合材料力学性能及耐磨性能的影响[J]. 金属学报, 2019, 55(8): 1049-1057.
[7] 吕钊钊,祖宇飞,沙建军,鲜玉强,张伟,崔鼎,严从林. 含Cu界面层碳纤维增强铝基复合材料制备工艺及其力学性能研究[J]. 金属学报, 2019, 55(3): 317-324.
[8] 马凯, 张星星, 王东, 王全兆, 刘振宇, 肖伯律, 马宗义. SiC/2009Al复合材料的变形加工参数的优化仿真研究[J]. 金属学报, 2019, 55(10): 1329-1337.
[9] 任建强, 梁淑华, 姜伊辉, 杜翔. 原位(TiB2-TiB)/Cu复合材料组织与性能研究[J]. 金属学报, 2019, 55(1): 126-132.
[10] 姚彦桃, 陈礼清, 王文广. 原位反应浸渗法制备(B4C+Ti)混杂增强Mg及AZ91D复合材料及其阻尼性能[J]. 金属学报, 2019, 55(1): 141-148.
[11] 王晨, 王贝贝, 薛鹏, 王东, 倪丁瑞, 陈礼清, 肖伯律, 马宗义. SiCp/6092Al复合材料搅拌摩擦焊接头的疲劳行为研究[J]. 金属学报, 2019, 55(1): 149-159.
[12] 邱丰, 佟昊天, 沈平, 丛晓霜, 王轶, 姜启川. 综述:SiC/Al界面反应与界面结构演变规律及机制[J]. 金属学报, 2019, 55(1): 87-100.
[13] 赵乃勤, 刘兴海, 蒲博闻. 多维度碳纳米相增强铝基复合材料研究进展[J]. 金属学报, 2019, 55(1): 1-15.
[14] 丁浩, 崔喜平, 许长寿, 李爱滨, 耿林, 范国华, 陈俊锋, 孟松鹤. 连续玄武岩纤维增强铝基层状复合材料的制备与力学特性[J]. 金属学报, 2018, 54(8): 1171-1178.
[15] 龚永勇, 程书敏, 钟玉义, 张云虎, 翟启杰. 脉冲磁致振荡凝固技术[J]. 金属学报, 2018, 54(5): 757-765.