Please wait a minute...
金属学报  2019, Vol. 55 Issue (5): 647-656    DOI: 10.11900/0412.1961.2018.00285
  本期目录 | 过刊浏览 |
电弧复合磁控溅射结合热退火制备Ti2AlC涂层
李文涛1,2,王振玉2,张栋2,潘建国1,柯培玲2(),汪爱英2
1. 宁波大学材料科学与化学工程学院 宁波 315201
2. 中国科学院宁波材料技术与工程研究所中国科学院海洋新材料与应用技术重点实验室 宁波 315201
Preparation of Ti2AlC Coating by the Combination of a Hybrid Cathode Arc/Magnetron Sputtering with Post-Annealing
Wentao LI1,2,Zhenyu WANG2,Dong ZHANG2,Jianguo PAN1,Peiling KE2(),Aiying WANG2
1. Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315201, China
2. Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
引用本文:

李文涛,王振玉,张栋,潘建国,柯培玲,汪爱英. 电弧复合磁控溅射结合热退火制备Ti2AlC涂层[J]. 金属学报, 2019, 55(5): 647-656.
Wentao LI, Zhenyu WANG, Dong ZHANG, Jianguo PAN, Peiling KE, Aiying WANG. Preparation of Ti2AlC Coating by the Combination of a Hybrid Cathode Arc/Magnetron Sputtering with Post-Annealing[J]. Acta Metall Sin, 2019, 55(5): 647-656.

全文: PDF(16185 KB)   HTML
摘要: 

利用电弧复合磁控溅射技术制备不同Ti/Al比的Ti-Al-C涂层,结合后续的退火处理制备Ti2AlC相涂层。利用SEM、EDS、XRD、Raman光谱仪和TEM等研究了Ti/Al比及退火温度对退火后Ti-Al-C涂层的相和微观结构的影响。结果表明,Ti-Al-C沉积态涂层为富Al层和TiCx层交替堆垛的多层结构,涂层表面大颗粒较少且结构致密。Ti/Al比对退火后涂层中的相结构有重要的影响:当Ti/Al比为2.04时,退火后涂层中Ti2AlC的纯度和结晶度最高;Ti/Al比过高(3.06)时,退火后涂层中形成TiC和Ti3AlC杂质相,而低Ti/Al比(0.54)则大幅度降低Ti2AlC相的纯度和结晶度。同时,退火温度很大程度影响Ti2AlC相的形成,当沉积态涂层中Ti/Al比为2.38时,Ti2AlC相涂层形成的最佳退火温度为750 ℃,偏低的退火温度(600 ℃)下,原子不能充分扩散,难以形成211结构的Ti2AlC相,而退火温度过高时(900 ℃)涂层中存在较多的TiC、TiAlx等杂质相。

关键词 电磁复合磁控溅射Ti2AlCTi-Al-C涂层Ti/Al比退火温度    
Abstract

Nuclear power generation provides a reliable and economic supply of electricity, due to low carbon emissions and relatively few waste. However, the reaction between zirconium and steam at high temperature is accompanied by the release of large amounts of hydrogen gas, which will bring serious consequences. After the Fukushima nuclear accident, the concept of accident-tolerant fuels (ATF) has been proposed and widely investigated. In terms of nuclear claddings, one key requirement is reduced oxidation kinetics with high-temperature steam and hence significantly reduced heat and hydrogen generation. An economical and simple method could be the preparation of protective coatings on the surface of zirconium alloys to improve the oxidation resistance. The MAX phase has been considered to be one of the most promising coating materials for nuclear cladding coatings. In this work, Ti-Al-C coatings with different Ti/Al ratios have been deposited on Zirlo alloy using a hybrid arc/magnetron sputtering method, and the Ti2AlC coatings were obtained by post-annealing. The effects of Ti/Al ratios and annealing temperatures on the phase and microstructure of Ti-Al-C coatings after annealing were studied by SEM, EDS, XRD, Raman spectrometer and TEM. It is found that Ti-Al-C coatings with different Ti/Al ratios deposited by the hybrid cathode arc/magnetron sputtering are a multi-layer structure of an alternative Al-rich layer and TiCx layer. The as-deposited coatings are compact with a small amount of large particles. The Ti/Al ratio has an important influence on the phase structure of the annealed coating. When the Ti/Al ratio is 2.04, the highest purity and crystallinity of Ti2AlC are obtained. TiC and Ti3AlC impurities will form within the coating at a higher Ti/Al ratio (3.06), while the purity and crystallinity of Ti2AlC will decrease at a lower Ti/Al ratio (0.54). In addition, the annealing temperature affects the formation of Ti2AlC to a great extent. When the Ti/Al ratio is 2.38, the optimum temperature for Ti-Al-C coatings to Ti2AlC coatings is at 750 ℃. The atom cannot diffuse fully at a lower annealing temperature (600 ℃), which is difficult to form the Ti2AlC phase, while a higher annealing temperature (900 ℃) will enable the formation of Ti2AlC coatings with more TiC, TiAlx and other impurities.

Key wordshybrid cathode arc/magnetron sputtering    Ti2AlC    Ti-Al-C coating    Ti/Al ratio    annealing temperature
收稿日期: 2018-06-29     
ZTFLH:  TB37  
基金资助:国家重大科技专项项目(2015ZX06004-001);中国博士后基金项目(2018M632513);浙江省自然科学基金项目(LQ19E01002);宁波市工业重点攻关项目(2017B10042)
作者简介: 李文涛,男,1988年生,硕士生
图1  电弧复合磁控溅射示意图

Procedure

Ar flow

mL·min-1

CH4 flow

mL·min-1

Presure

Pa

Bias voltage

V

Current / A
Ion gunArcSputter
Etching40---3000.2--
TiC layer200503.99-100-70-
Ti-Al-C layer200153.99-200-608.0
表1  Ti-Al-C涂层沉积参数
SampleNo.1No.2No.3No.4No.5
As-deposited2.382.041.640.660.42
As-annealed3.061.751.090.990.54
表2  No.1~No.5样品中涂层在沉积态和退火态时的Ti/Al比
图2  No.1~No.5沉积态涂层表面形貌的SEM像
图3  No.1~No.5退火态涂层表面形貌的SEM像
图4  No.1~No.5退火态涂层截面形貌的SEM像
图5  No.2和No.4样品经800 ℃退火1 h后截面的线扫描图及面分布图
图6  No.1~No.5样品经800 ℃退火1 h后的XRD谱
图7  No.1样品退火前后的Raman光谱
图8  No.1样品中涂层在沉积态及800 ℃退火1 h后的HRTEM分析
图9  No.1样品沉积态及经不同温度退火1 h后表面形貌的SEM像
图10  No.1样品沉积态及经不同温度退火1 h后的截面形貌及线扫描图
图11  No.1样品经600~900 ℃退火1 h后的XRD谱
图12  No.1样品经600~900 ℃退火1 h后的Raman光谱
图13  No.1样品(0002)和(10$\bar{1}$3)晶面处晶粒尺寸随退火温度的变化
[1] BarsoumM W. The MN+1AXN phases: A new class of solids: Thermodynamically stable nanolaminates[J]. Prog. Solid State Chem., 2000, 28: 201
[2] EklundP, BeckersM, JanssonU, et al. The Mn+1AXn phases: Materials science and thin-film processing[J]. Thin Solid Films, 2010, 518: 1851
[3] YangH Y, ZhangR Q, PengX M, et al. Research progress regarding surface coating of zirconium alloy cladding[J].Surf. Technol., 2017, 46(1): 69
[3] (杨红艳, 张瑞谦, 彭小明等. 锆合金包壳表面涂层研究进展 [J]. 表面技术, 2017, 46(1): 69)
[4] YuehK, TerraniK A. Silicon carbide composite for light water reactor fuel assembly applications[J]. J. Nucl. Mater., 2014, 448: 380
[5] TerraniK A, ZinkleS J, SneadL L. Advanced oxidation-resistant iron-based alloys for LWR fuel cladding[J]. J. Nucl. Mater., 2014, 448: 420
[6] LuoK, ZhaX H, HuangQ, et al. Theoretical investigations on helium trapping in the Zr/Ti2AlC interface[J]. Surf. Coat. Technol., 2017, 322: 19
[7] BasuS, ObandoN, GowdyA, et al. Long-term oxidation of Ti2AlC in air and water vapor at 1000-1300 ℃ temperature range[J]. J. Electrochem. Soc., 2012, 159: C90
[8] LiS B, SongG M, KwakernaakK, et al. Multiple crack healing of a Ti2AlC ceramic[J]. J. Eur. Ceram. Soc., 2012, 32: 1813
[9] MaierB R, Garcia-DiazB L, HauchB, et al. Cold spray deposition of Ti2AlC coatings for improved nuclear fuel cladding[J]. J. Nucl. Mater., 2015, 466: 712
[10] FrodeliusJ, EklundP, BeckersM, et al. Sputter deposition from a Ti2AlC target: Process characterization and conditions for growth of Ti2AlC[J]. Thin Solid Films, 2010, 518: 1621
[11] FengZ J, KeP L, WangA Y. Preparation of Ti2AlC MAX phase coating by DC magnetron sputtering deposition and vacuum heat treatment[J]. J. Mater. Sci. Technol., 2015, 31: 1193
[12] FengZ J, KeP L, HuangQ, et al. The scaling behavior and mechanism of Ti2AlC MAX phase coatings in air and pure water vapor[J]. Surf. Coat. Technol., 2015, 272: 380
[13] FuJ J, ZhangT F, XiaQ X, et al. Oxidation and corrosion behavior of nanolaminated MAX-phase Ti2AlC film synthesized by high-power impulse magnetron sputtering and annealing[J]. J. Nanomater., 2015, 2015: 213128
[14] YeomH, HauchB, CaoG P, et al. Laser surface annealing and characterization of Ti2AlC plasma vapor deposition coating on zirconium-alloy substrate[J]. Thin Solid Films, 2016, 615: 202
[15] TangC, KlimenkovM, JaentschU, et al. Synthesis and characterization of Ti2AlC coatings by magnetron sputtering from three elemental targets and ex-situ annealing[J]. Surf. Coat. Technol., 2017, 309: 445
[16] GuenetteM C, TuckerM D, IonescuM, et al. Cathodic arc co-deposition of highly oriented hexagonal Ti and Ti2AlC MAX phase thin film[J]. Thin Solid Films, 2010, 519: 766
[17] RosénJ, RyvesL, O ?PerssonP , et al. Deposition of epitaxial Ti2AlC thin films by pulsed cathodic arc[J]. J. Appl. Phys., 2007, 101: 056101
[18] ShuR, GeF F, MengF P, et al. One-step synthesis of polycrystalline V2AlC thin films on amorphous substrates by magnetron co-sputtering[J]. Vacuum, 2017, 146: 106
[19] WangJ Y, ZhouY C, LiaoT, et al. A first-principles investigation of the phase stability of Ti2AlC with Al vacancies[J]. Scr. Mater., 2008, 58: 227
[20] LiJ J, HuL F, LiF Z, et al. Variation of microstructure and composition of the Cr2AlC coating prepared by sputtering at 370 ℃ and 500 ℃[J]. Surf. Coat. Technol., 2010, 204: 3838
[21] SuR R, ZhangH L, O'ConnorD J, et al. Deposition and characterization of Ti2AlC MAX phase and Ti3AlC thin films by magnetron sputtering[J]. Mater. Lett., 2016, 179: 194
[22] LiuJ Z, ZuoX, WangZ Y, et al. Fabrication and mechanical properties of high purity of Cr2Al Ccoatings by adjustable Al contents[J]. J. Alloys Compd., 2018, 753: 11
[23] LiY M, ZhaoG R, QianY H, et al. Deposition and characterization of phase-pure Ti2AlC and Ti3AlC2 coatings by DC magnetron sputtering with cost-effective targets[J]. Vacuum, 2018, 153: 62
[24] WangZ Y, LiuJ Z, WangL, et al. Dense and high-stability Ti2AlN MAX phase coatings prepared by the combined cathodic arc/sputter technique[J]. Appl. Surf. Sci., 2017, 396: 1435
[25] LowI M, PangW K, KennedyS J, et al. High-temperature thermal stability of Ti2AlN and Ti4AlN3: A comparative diffraction study[J]. J. Eur. Ceram. Soc., 2011, 31: 159
[26] WilhelmssonO, PalmquistJ P, NybergT, et al. Deposition of Ti2AlC and Ti3AlC2 epitaxial films by magnetron sputtering[J]. Appl. Phys. Lett., 2004, 85: 1066
[27] LiJ J, QianY H, NiuD, et al. Phase formation and microstructure evolution of arc ion deposited Cr2AlC coating after heat treatment[J]. Appl. Surf. Sci., 2012, 263: 457
[28] MiernikK, WalkowiczJ. Spatial distribution of microdroplets generated in the cathode spots of vacuum arcs[J]. Surf. Coat. Technol., 2000, 125: 161
[29] BandyopadhyayD, SharmaR C, ChakrabortiN. The Ti-Al-C system (titanium-aluminum-carbon)[J]. J. Phase Equilib., 2000, 21: 195
[30] PresserV, NaguibM, ChaputL, et al. First-order Raman scattering of the MAX phases: Ti2AlN, Ti2AlC0.5N0.5, Ti2AlC, (Ti0.5V0.5)2AlC, V2AlC, Ti3AlC2, and Ti3GeC2[J]. J. Raman Spectro., 2012, 43: 168
[31] HakamadaM, NakamotoY, MatsumotoH, et al. Relationship between hardness and grain size in electrodeposited copper films[J]. Mater. Sci. Eng., 2007, A457: 120
[32] TangC C, SteinbrueckM, StueberM, et al. Deposition, characterization and high-temperature steam oxidation behavior of single-phase Ti2AlC-coated Zircaloy-4[J]. Corros. Sci., 2018, 135: 87
[33] WangJ M, WangJ Y, ZhouY C. Stable M2AlC (0001) surfaces (M=Ti, V and Cr) by first-principles investigation[J]. J. Phys. Condens Matter, 2008, 20: 225006
[1] 王玉, 胡斌, 刘星毅, 张浩, 张灏云, 官志强, 罗海文. 退火温度对含Nb高锰钢力学和阻尼性能的影响[J]. 金属学报, 2021, 57(12): 1588-1594.
[2] 王启 贺志荣 王永善 杨军. 退火温度和应力-应变循环对Ti-Ni-Cr形状记忆合金超弹性的影响[J]. 金属学报, 2010, 46(7): 800-804.
[3] 刘刚 彭华备 文玉华 杨坤 李宁. 基于马氏体区域化形成的免训练铸造Fe-Mn-Si-Cr-Ni形状记忆合金 II.退火对形状记忆效应的影响[J]. 金属学报, 2010, 46(3): 288-293.
[4] 王秋娜; 刘新华; 刘雪峰; 谢建新 . 退火温度对冷静液挤压铜包铝线材组织和力学性能的影响[J]. 金属学报, 2008, 44(6): 675-680 .
[5] 赵卫涛; 闫德胜; 戎利建 . 变形Al-Mg-Sc-Zr合金退火组织的TEM观察[J]. 金属学报, 2005, 41(11): 1150-1154 .
[6] 曾桂仪; 周广智; 巴启先 . 退火温度对Fe72.5Cu1Nb2V2Si13.5B9软磁合金微结构的影响[J]. 金属学报, 1999, 35(11): 1178-1182 .