Please wait a minute...
金属学报  2019, Vol. 55 Issue (4): 529-536    DOI: 10.11900/0412.1961.2018.00280
  本期目录 | 过刊浏览 |
Na对于Al早期大气腐蚀的影响
陈星晨,王杰,陈德任,钟舜聪,王向峰()
福州大学机械工程与自动化学院能源与环境光催化国家重点实验室 福州 350002
Effect of Na on Early Atmospheric Corrosion of Al
Xingchen CHEN,Jie WANG,Deren CHEN,Shuncong ZHONG,Xiangfeng WANG()
State Key Laboratory of Photocatalysis on Energy and Environment, School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350002, China
引用本文:

陈星晨, 王杰, 陈德任, 钟舜聪, 王向峰. Na对于Al早期大气腐蚀的影响[J]. 金属学报, 2019, 55(4): 529-536.
Xingchen CHEN, Jie WANG, Deren CHEN, Shuncong ZHONG, Xiangfeng WANG. Effect of Na on Early Atmospheric Corrosion of Al[J]. Acta Metall Sin, 2019, 55(4): 529-536.

全文: PDF(6254 KB)   HTML
摘要: 

采用单脉冲激光诱导击穿光谱(LIBS)测量了大气环境中腐蚀35 d后金属Al的谱线,结合三维形貌测量,研究了Na元素在Al表面的深度分布。结果表明,Al表面的Na元素源于大气环境,且Na参与生成腐蚀产物NaAlCO3(OH)2,其含量随着腐蚀深度的增加呈幂函数衰减。不同腐蚀深度时NaAlCO3(OH)2的含量可以转变为阴极面积的变化,结合测量得到的Al的极化曲线,利用COMSOL软件建立了氧还原和阴极面积同时影响Al的大气腐蚀仿真模型,揭示Na对腐蚀机理的影响。计算结果表明腐蚀深度为6.155 μm,与LIBS实验测得的Na元素深度一致。

关键词 大气腐蚀激光诱导击穿光谱(LIBS)三维形貌腐蚀产物COMSOL    
Abstract

Aluminum and aluminum alloy are widely used in every field of modern life. It is especially important to understand the detailed mechanisms of aluminum atmospheric corrosion. Traditional studies only consider the role of oxygen reduction and focus on anions such as Cl, SO42- in the environment, ignoring the effects of cations such as Na+ on the atmospheric corrosion. However, recent studies have shown that the effect of Na element on the corrosion of aluminum can not be ignored. In this work, single-shot laser-induced breakdown spectroscopy (LIBS) was used to measure the aluminum atomic lines after corrosion for 35 d in the atmospheric environment, and combined with a three-dimensional tomography measurement, to study the depth profiling of Na on the aluminum surface. The results show that the Na element on the surface of the aluminum originates from the atmospheric environment, and Na is involved in the formation of corrosion product NaAlCO3(OH)2. The content of NaAlCO3(OH)2 decreases as the depth increases following an exponential power function. The content decrease of NaAlCO3(OH)2 in different depths can be transformed into the change of cathode area. Combined with the measured polarization curve of aluminum, the atmospheric corrosion model of aluminum including the presence of oxygen reduction and the change of cathode area was established using COMSOL software. The calculated corrosion depth is 6.155 μm, which is consistent with the depth of Na element measured by LIBS experiments. By studying the distribution of Na cations and corrosion products, a simulation model was established to reveal the influence on corrosion mechanism, which is of great significance for the study of early atmospheric corrosion of aluminum.

Key wordsatmospheric corrosion    laser induced breakdown spectroscopy (LIBS)    three-dimensional topography    corrosion product    COMSOL
收稿日期: 2018-06-27     
ZTFLH:  TG146  
基金资助:国家自然科学基金项目(No.51675103);福州大学能源与环境光催化国家重点实验室基金项目(No.SKLPEE-KF201719);福州科技局项目(No.2018-G-35)
作者简介: 陈星晨,男,1993年生,博士生
图1  Al大气环境腐蚀5周前后表面显微图
图2  Al样品表面激光诱导击穿光谱(LIBS)谱线强度随脉冲数变化规律
图3  纳秒激光烧蚀形貌及烧蚀孔洞深度
图4  Al在25 ℃、pH=7的3%NaCl溶液中的极化曲线
图5  Al的大气腐蚀过程示意图
图6  大气腐蚀后Al不同深度Na产物的相对含量及归一化阴极相对面积与腐蚀深度的关系
图7  利用COMSOL软件建立的Al的大气腐蚀模型

Position

Eeq

V

I0

A?m-2

βan

V?dec-1

βCa

V?dec-1

Anode-0.6654.008×10-40.104-0.487
Cathode0.81538.508×10-5-0.339
表1  Al电化学腐蚀参数
图8  Al早期大气腐蚀仿真与测量数据[36]对比
1 Hou B R, Li X G, Ma X M, et al. The cost of corrosion in China [J]. npj Mater. Degrad., 2017, 1: 4
2 An B G, Zhang X Y, Han E-H, et al. Research situation of atmospheric corrosion of aluminum and aluminum alloys [J]. Chin. J. Nonferrous Met., 2001, 11(增刊2): 11
2 安百刚, 张学元, 韩恩厚等. 铝和铝合金的大气腐蚀研究现状 [J]. 中国有色金属学报, 2001, 11(suppl.2): 11)
3 Nesic S, Nordsveen M, Maxwell N, et al. Probabilistic modelling of CO2, corrosion laboratory data using neural networks [J]. Corros. Sci., 2001, 43: 1373
4 Song Y R, Jiang G M, Chen Y, et al. Effects of chloride ions on corrosion of ductile iron and carbon steel in soil environments [J]. Sci. Rep., 2017, 7: 6865
5 Mccafferty E. Sequence of steps in the pitting of aluminum by chloride ions [J]. Corros. Sci., 2003, 45: 1421
6 Vera R, Delgado D, Rosales B M. Effect of atmospheric pollutants on the corrosion of high power electrical conductors: Part 1. Aluminium and AA6201 alloy [J]. Corros. Sci., 2006, 48: 2882
7 Schaller R F, Jove-Colon C F, Taylor J M, et al. The controlling role of sodium and carbonate on the atmospheric corrosion rate of aluminum [J]. npj Mater. Degrad., 2017, 1: 20
8 Ejaz A, Lu Z P, Chen J J, et al. The effects of hydrogen on anodic dissolution and passivation of iron in alkaline solutions [J]. Corros. Sci., 2015, 101: 165
9 Alcántara J, Chico B, Díaz I, et al. Airborne chloride deposit and its effect on marine atmospheric corrosion of mild steel [J]. Corros. Sci., 2015, 97: 74
10 Watanabe M, Hokazono A, Handa T, et al. Corrosion of copper and silver plates by volcanic gases [J]. Corros. Sci., 2006, 48: 3759
11 Blücher D B, Lindström R W, Svensson J E, et al. The effect of CO2 on the NaCl-induced atmospheric corrosion of aluminum [J]. J. Electrochem. Soc., 2001, 148: B127
12 Blücher D B, Svensson J E, Johansson L G. The NaCl-induced atmospheric corrosion of aluminum the influence of carbon dioxide and temperature [J]. J. Electrochem. Soc., 2001, 150: B93
13 Wen S B, Mao X L, Greif R, et al. Laser ablation induced vapor plume expansion into a background gas. II. Experimental analysis [J]. J. Appl. Phys., 2007, 101: 023115
14 Li T C, Yuan C S, Huang H C, et al. Inter-comparison of seasonal variation, chemical characteristics, and source identification of atmospheric fine particles on both sides of the Taiwan Strait [J]. Sci. Rep., 2016, 6: 22956
15 Xiao H W, Xiao H Y, Luo L, et al. Atmospheric aerosol compositions over the South China Sea: Temporal variability and source apportionment [J]. Atmos. Chem. Phys., 2017, 17: 3199
16 Zhao R J, Han B, Lu B, et al. Element composition and source apportionment of atmospheric aerosols over the China Sea [J]. Atmos. Pollut. Res., 2015, 6: 191
17 Chen Z Y, Cui F, Kelly R G. Calculations of the cathodic current delivery capacity and stability of crevice corrosion under atmospheric environments [J]. J. Electrochem. Soc., 2008, 155: C360
18 Galvele J. Transport processes in passivity breakdown—II. Full hydrolysis of the metal ions [J]. Corros. Sci., 1981, 21: 551
19 Gravano S M, Galvele J R. Transport processes in passivity breakdown—III. Full hydrolysis plus ion migration plus buffers [J]. Corros. Sci., 1984, 24: 517
20 Nguyen T H, Foley R T. The chemical nature of aluminum corrosion. Ш. The dissolution mechanism of aluminum oxide and aluminum powder in various electrolytes [J]. J. Electrochem. Soc., 1980, 127: 2563
21 Graedel T E. Corrosion mechanisms for aluminum exposed to the atmosphere [J]. J. Electrochem. Soc., 1989, 136: 204C
22 El Sherbini A M, El Sherbini T M, Hegazy H, et al. Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements [J]. Spectrochim. Acta, 2005, 60B: 1573
23 Lazic V, Barbini R, Colao F, et al. Self-absorption model in quantitative laser induced breakdown spectroscopy measurements on soils and sediments [J]. Spectrochim. Acta, 2001, 56B: 807
24 Rai A K, Yueh F Y, Singh J P. Laser-induced breakdown spectroscopy of molten aluminum alloy [J]. Appl. Opt., 2003, 42: 2078
25 Lutey A H A. An improved model for nanosecond pulsed laser ablation of metals [J]. J. Appl. Phys., 2013, 114: 083108
26 Aziz P M, Godard H P. Pitting corrosion characteristics of aluminum—Influence of magnesium and manganese [J]. Ind. Eng. Chem., 2002, 44: 1791
27 Mansfeld F, Kenkel J V. Galvanic corrosion of Al alloys—III. The effect of area ratio [J]. Corros. Sci., 1975, 15: 239
28 Melchers R E. Time dependent development of aluminium pitting corrosion [J]. Adv. Mater. Sci. Eng., 2015, 2015: 215712
29 Deshpande K B. Validated numerical modelling of galvanic corrosion for couples: Magnesium alloy (AE44)-mild steel and AE44-aluminium alloy (AA6063) in brine solution [J]. Corros. Sci., 2010, 52: 3514
30 Ge J, Isgor O B. Effects of Tafel slope, exchange current density and electrode potential on the corrosion of steel in concrete [J]. Mater. Corros., 2007, 58: 573
31 Mizuno D, Kelly R G. Galvanically Induced intergranular corrosion of AA5083-H131 under atmospheric exposure conditions: Part 2—Modeling of the damage distribution [J]. Corrosion, 2013, 69: 681
32 Millero F J, Huang F, Laferiere A L. Solubility of oxygen in the major sea salts as a function of concentration and temperature [J]. Mar. Chem., 2002, 78: 217
33 Verbrugge M. Galvanic corrosion over a semi-infinite, planar surface [J]. Corros. Sci., 2006, 48: 3489
34 Antonijevic M M, Alagic S C, Petrovi M B, et al. The influence of pH on electrochemical behavior of copper in presence of chloride ions [J]. Int. J. Electrochem. Sc., 2009, 4: 962
35 Lin J M. Effect of city on the atmosphere humidity distribution—Taking Fuzhou as an example [J]. Areal Res. Dev., 1991, 10(2): 51
35 林家蒙. 城市对大气湿度分布影响研究——以福州市为例 [J]. 地域研究与开发, 1991, 10(2): 51)
36 Mattsson E, Lindgren S. Hard-rolled aluminum alloys [A]. Metal Corrosion in the Atmosphere [C]. Philadelphia: American Society for Testing and Materials, 1968: 240
[1] 李小涵, 曹公望, 郭明晓, 彭云超, 马凯军, 王振尧. 低碳钢Q235、管线钢L415和压力容器钢16MnNi在湛江高湿高辐照海洋工业大气环境下的初期腐蚀行为[J]. 金属学报, 2023, 59(7): 884-892.
[2] 宋嘉良, 江紫雪, 易盼, 陈俊航, 李曌亮, 骆鸿, 董超芳, 肖葵. 高铁转向架用钢G390NH在模拟海洋和工业大气环境下的腐蚀行为及产物演化规律[J]. 金属学报, 2023, 59(11): 1487-1498.
[3] 黄松鹏, 彭灿, 曹公望, 王振尧. BTA保护的白铜在模拟工业大气环境中的腐蚀行为[J]. 金属学报, 2021, 57(3): 317-326.
[4] 刘雨薇, 赵洪涛, 王振尧. 碳钢和耐候钢在南沙海洋大气环境中的初期腐蚀行为[J]. 金属学报, 2020, 56(9): 1247-1254.
[5] 宋学鑫, 黄松鹏, 汪川, 王振尧. 碳钢在红沿河海洋工业大气环境中的初期腐蚀行为[J]. 金属学报, 2020, 56(10): 1355-1365.
[6] 王力,董超芳,张达威,孙晓光,Thee Chowwanonthapunya,满成,肖葵,李晓刚. 合金元素对铝合金在泰国曼谷地区初期腐蚀行为的影响[J]. 金属学报, 2020, 56(1): 119-128.
[7] 王宝刚, 易红亮, 王国栋, 骆智超, 黄明欣. 原位生成铁基复合材料中TiB2的三维形貌重构[J]. 金属学报, 2019, 55(1): 133-140.
[8] 鲍思前, 刘兵兵, 赵刚, 徐洋, 柯珊珊, 胡晓, 刘磊. Hi-B钢二次再结晶退火中异常长大Goss取向晶粒的三维形貌表征[J]. 金属学报, 2018, 54(6): 877-885.
[9] 康慧君, 李金玲, 王同敏, 郭景杰. 定向凝固Al-Mn-Be合金初生金属间化合物相生长行为及力学性能[J]. 金属学报, 2018, 54(5): 809-823.
[10] 郭明晓, 潘晨, 王振尧, 韩薇. 碳钢在模拟海洋工业大气环境中初期腐蚀行为研究[J]. 金属学报, 2018, 54(1): 65-75.
[11] 张慧, 杜艳霞, 李伟, 路民旭. 不同环境介质中X70钢的交流腐蚀行为及腐蚀产物膜层分析[J]. 金属学报, 2017, 53(8): 975-982.
[12] 徐洋,鲍思前,赵刚,黄祥斌,黄儒胜,刘兵兵,宋娜娜. Hi-B钢二次再结晶退火初期不同取向晶粒的三维形貌表征[J]. 金属学报, 2017, 53(5): 539-548.
[13] 韩军科,严红,黄耀,周鲁军,杨善武. 耐候钢表面氧化皮的结构特征及其对大气腐蚀行为的影响[J]. 金属学报, 2017, 53(2): 163-174.
[14] 许立宁,王贝,路民旭. 6.5%Cr钢在高温高压CO2环境下的腐蚀行为研究*[J]. 金属学报, 2016, 52(6): 672-678.
[15] 陈文娟, 郝龙, 董俊华, 柯伟, 文怀梁. 模拟工业-海岸大气中pH值对Q235B钢腐蚀行为的影响*[J]. 金属学报, 2015, 51(2): 191-200.