Please wait a minute...
金属学报  2019, Vol. 55 Issue (4): 436-444    DOI: 10.11900/0412.1961.2018.00276
  本期目录 | 过刊浏览 |
固溶温度对Mn-N型双相不锈钢拉伸变形行为的影响
金淼1,李文权1,郝硕1,2,梅瑞雪1,李娜1,陈雷1,2()
1. 燕山大学机械工程学院 秦皇岛 066004
2. 国家冷轧板带装备及工艺工程技术研究中心 秦皇岛 066004
Effect of Solution Temperature on Tensile Deformation Behavior of Mn-N Bearing Duplex Stainless Steel
Miao JIN1,Wenquan LI1,Shuo HAO1,2,Ruixue MEI1,Na LI1,Lei CHEN1,2()
1. College of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, China
2. National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, Qinhuangdao 066004, China
引用本文:

金淼, 李文权, 郝硕, 梅瑞雪, 李娜, 陈雷. 固溶温度对Mn-N型双相不锈钢拉伸变形行为的影响[J]. 金属学报, 2019, 55(4): 436-444.
Miao JIN, Wenquan LI, Shuo HAO, Ruixue MEI, Na LI, Lei CHEN. Effect of Solution Temperature on Tensile Deformation Behavior of Mn-N Bearing Duplex Stainless Steel[J]. Acta Metall Sin, 2019, 55(4): 436-444.

全文: PDF(19176 KB)   HTML
摘要: 

在Gleeble-3800热模拟试验机上进行了一种新型Mn-N合金化双相不锈钢的拉伸变形实验,获得了不同固溶温度下(1000~1200 ℃)不锈钢的力学性能及加工硬化规律。利用OM、SEM和EBSD等手段研究了固溶温度对钢的形变亚结构及断裂特征的影响,探讨了固溶温度影响加工硬化的机理。结果表明,随着固溶温度的升高,Mn-N合金化双相不锈钢屈服强度与抗拉强度均逐渐降低,而延伸率(均匀延伸率和断裂延伸率)则先升高后降低。其中,1100 ℃固溶时不锈钢的塑性最佳,均匀延伸率可达46.7%,且综合力学性能优异,强塑积达44.6 GPa·%。不同固溶温度下,不锈钢的加工硬化率随应变的增加均表现为开始时迅速下降,经再次升高后再下降的“三阶段”特征,但随着固溶温度的升高,加工硬化率升高的趋势减弱。Mn-N合金化双相不锈钢中奥氏体相发生了形变诱导马氏体相变,主要表现为γεα′γα′ 2种演化机制,从而形成TRIP效应,使得加工硬化率升高、塑性增加,但较高的固溶温度会使马氏体转变受到抑制。不同固溶温度下,铁素体与形变诱导马氏体均表现出解理断裂特征,而残余奥氏体则主要为韧性断裂。经计算,随着固溶温度增加(1000~1200 ℃),奥氏体相的Md30值从81 ℃降到38 ℃,即奥氏体稳定性增加,减弱了TRIP效应,进而导致不锈钢加工硬化和增塑效果降低。

关键词 双相不锈钢固溶温度加工硬化TRIP效应形变诱导马氏体    
Abstract

Advanced duplex stainless steels (DSSs) in which Ni is mostly or completely replaced by Mn and N have been developed in recent years. Such Mn-N bearing DSSs can readily achieve exceptional room-temperature tensile properties through the transformation-induced plasticity (TRIP) effect of metastable austenite. During the processing of DSSs, solution treatment is a critical step that tailors the phase fraction and the overall properties. In particular, the phase chemistry can change due to different element partitioning between two constituents, resulting in a different TRIP kinetics, when DSS is solution treated at different temperature. In this work, the effect of solution temperature on tensile deformation behavior of a new Mn-N bearing DSS was studied. The mechanical properties and work-hardening characteristic of the steels solution treated at different solution temperature (1000~1200 ℃) were investigated by thermal modeling test, and the effects of solution temperature on the deformation substructure and fracture characteristics were analyzed by OM, SEM and EBSD. The results show that as the solution temperature increases, the yield strength and tensile strength of the steels decrease, while the elongation (uniform elongation and total elongation) increases firstly and then decreases. The steel solution treated at 1100 ℃ shows the optimum uniform elongation of 46.7%, and a better combination of ultimate tensile strength and ductility of approximately 44.6 GPa·%. The work-hardening rate of the steel shows a three-stage characteristic, namely it declines firstly and then increases and subsequently declines again as the strain increases. However, the increasing extent of the work-hardening rate decreases as the solution temperature increases. The strain-induced martensitic transformation (SIMT) of metastable austenite which causes the TRIP effect has two evolution mechanisms of γεα' and γα'. But SIMT can be suppressed when the solution temperature increases. The fracture surfaces of specimens solution treated at different temperatures show a quasi-cleavage mode, in which both ferrite and strain-induced martensite exhibit cleavage fracture while the residual austenite displays a dimple-mode fracture. Furthermore, the Md30 which can characterize the stability of metastable austenite was calculated, which decreases from 81 ℃ to 38 ℃ as the solution temperature increases from 1000 ℃ to 1200 ℃, indicating that the TRIP effect gets weakening at a higher solution temperature, and the work-hardening and plasticity therefore decrease.

Key wordsduplex stainless steel    solution temperature    work-hardening    TRIP effect    strain induced martensite
收稿日期: 2018-06-27     
ZTFLH:  TG142.1  
基金资助:国家自然科学基金项目(Nos.51675467);国家自然科学基金项目(Nos.51675465);河北省自然科学基金项目(No.E2016203284);中国博士后科学基金项目(Nos.2016-M600194);中国博士后科学基金项目(Nos.2017T100712)
作者简介: 金 淼,男,1968年生,教授,博士
图1  Mn-N合金化双相不锈钢拉伸样品尺寸
图2  不同固溶温度下Mn-N合金化双相不锈钢样品的显微组织
图3  不同固溶温度下Mn-N合金化双相不锈钢样品的工程应力-应变曲线
T / ℃Yield strength / MPaTensile strength / MPae / %eu / %SD / (GPa·%)
1000510102742.842.043.9
105049799446.546.046.2
110048693947.546.744.6
115047385539.639.135.1
120046077230.630.123.6
表1  不同固溶温度下Mn-N合金化双相不锈钢的力学性能
图4  不同固溶温度下Mn-N合金化双相不锈钢样品EBSD与带对比度分析
图5  1200 ℃固溶后Mn-N合金化双相不锈钢变形30%的组织EBSD分析
图6  不同固溶温度下Mn-N合金化双相不锈钢的真应力-应变-加工硬化率曲线
T / ℃εsεf
10000.080.35
10500.100.38
11000.090.38
11500.110.33
12000.130.26
表2  不同固溶温度下Mn-N合金化双相不锈钢马氏体相变的开始与结束应变
图7  不同固溶温度下Mn-N合金化双相不锈钢拉伸断口形貌
图8  Mn-N合金化双相不锈钢Md30随固溶温度变化曲线
图9  Mn-N合金化双相不锈钢相图
1 He J, Han G, Fukuyama S, et al. Tensile behaviour of duplex stainless steel at low temperatures [J]. Metal. Sci. J., 1999, 15: 909
2 Badji R, Bacroix B, Bouabdallah M.Texture, microstructure and anisotropic properties in annealed 2205 duplex stainless steel welds[J]. Mater. Charact.,2011, 62: 833
3 Jiang L Z, Zhang W, Wang Z Y. Research and development of lean duplex stainless steels [J]. J. Iron Steel Res., 2013, 25(4): 1
3 江来珠, 张 伟, 王治宇. 经济型双相不锈钢的研发进展 [J]. 钢铁研究学报, 2013, 25(4): 1)
4 Du C F, Zhan F, Yang Y H, et al. Research progress in nickel-saving duplex stainless steel [J]. Met. Funct. Mater., 2010: 17(5): 63
4 杜春风, 詹 凤, 杨银辉等. 节镍型双相不锈钢的研究进展 [J]. 金属功能材料, 2010: 17(5): 63)
5 Herrera C, Ponge D, Raabe D. Design of a novel Mn-based 1 GPa duplex stainless TRIP Steel with 60% ductility by a reduction of austenite stability [J]. Acta Mater., 2011, 59: 4653
6 Wang J, Uggowitzer P J, Magdowski R, et al. Nickel-free duplex stainless steels [J]. Scr. Mater., 1998, 40: 123
7 Ran Q X, Xu Y L, Li J, et al. Effect of heat treatment on transformation-induced plasticity of economical Cr19 duplex stainless steel [J]. Mater. Des., 2014, 56: 959
8 Choi J Y, Ji J H, Hwang S W, et al. TRIP aided deformation of a near-Ni-free, Mn-N bearing duplex stainless steel [J]. Mater. Sci. Eng., 2012, A535: 32
9 Kang J Y, Kim H, Kim K I, et al. Effect of austenitic texture on tensile behavior of lean duplex stainless steel with transformation induced plasticity (TRIP) [J]. Mater. Sci. Eng., 2017, A681: 114
10 Zhang W N, Liu Z Y, Wang G D. Martensitic transformation induced by deformation and work-hardening behavior of high manganese TRIP steels [J]. Acta Metall. Sin., 2010, 46: 1230
10 张维娜, 刘振宇, 王国栋. 高锰TRIP钢的形变诱导马氏体相变及加工硬化行为 [J]. 金属学报, 2010, 46: 1230
11 Chen L, Li F, Zhang Y J, et al. Calculation for the phase diagram and stability of metastable austenite in a TRIP/TWIP duplex stainless steel [J]. J. Yanshan Univ., 2016, 40: 35
11 陈 雷, 李 飞, 张英杰等. 一种TRIP/TWIP型双相不锈钢的相图及其亚稳奥氏体组织稳定性计算 [J]. 燕山大学学报, 2016, 40: 35
12 Li X F, Li Z B, Guo H S, et al. Influence of solution temperature on structure and properties of Ni-free type dual stainless steel 00Cr21 Mn5Ni1N [J]. J. Iron Steel Res., 2007, 19(10): 44
12 李学锋, 李正邦, 郭海生等. 固溶温度对00Cr21Mn5Ni1N节镍型双相不锈钢组织和性能的影响 [J]. 钢铁研究学报, 2007, 19(10): 44)
13 Chen L, Zhang Y J, Li F, et al. Effect of solution temperature on TRIP/TWIP behavior of a lean duplex stainless steel [J]. Iron Steel, 2017, 52(4): 55
13 陈 雷, 张英杰, 李 飞等. 固溶温度对节约型双相不锈钢TRIP/TWIP行为的影响 [J]. 钢铁, 2017, 52(4): 55)
14 Guo B F, Zhang Q F, Chen L, et al. Influence of annealing temperature on the strain-hardening behavior of a lean duplex stainless steel [J]. Mater. Sci. Eng., 2018, A722: 216
15 Tang Z Y, Wu Z Q, Zan N, et al. Microstructure evolution and deformation behavior of high manganese TRIP/TWIP symbiotic effect steels under high-speed deformation [J]. Acta Metall. Sin., 2011, 47: 1426
15 唐正友, 吴志强, 昝 娜等. 高锰TRIP/TWIP效应共生钢高速变形过程中的组织演变及变形行为 [J]. 金属学报, 2011, 47: 1426
16 Choi J Y, Ji J H, Hwang S W, et al. Effects of nitrogen content on TRIP of Fe-20Cr-5Mn-xN duplex stainless steel [J]. Mater. Sci. Eng., 2012, A534: 673
17 Choi J Y, Ji J H, Hwang S W, et al. Strain induced martensitic transformation of Fe-20Cr-5Mn-0.2Ni duplex stainless steel during cold rolling: Effects of nitrogen addition [J]. Mater. Sci. Eng., 2011, A528: 6012
18 Wang M M, Tasan C C, Ponge D, et al. Spectral TRIP enables ductile 1.1 GPa martensite [J]. Acta Mater., 2016, 111: 262
19 Masumura T, Nakada N, Tsuchiyama T, et al. The difference in thermal and mechanical stabilities of austenite between carbon- and nitrogen-added metastable austenitic stainless steels [J]. Acta Mater., 2015, 84: 330
20 Kim E Y, Woo W C, Heo Y U, et al. Effect of kinematic stability of the austenite phase on phase transformation behavior and deformation heterogeneity in duplex stainless steel using the crystal plasticity finite element method [J]. Int. J. Plast., 2016, 79: 48
21 Lin Y C, Chen M S, Zhong J. Static recrystallization behaviors of deformed 42CrMo steel [J]. J. Cent. South Univ. (Sci. Technol.), 2009, 40: 411
21 蔺永诚, 陈明松, 钟 掘. 42CrMo钢形变奥氏体的静态再结晶 [J]. 中南大学学报(自然科学版), 2009, 40: 411
22 Gutierrez-Urrutia I, Raabe D. Multistage strain hardening through dislocation substructure and twinning in a high strength and ductile weight-reduced Fe-Mn-Al-C steel [J]. Acta Mater. 2012, 60: 5791
23 Lu F Y, Yang P, Meng L, et al. Microstructure, mechanical properties and crystallography analysis of Fe-22Mn TRIP/TWIP steel after tensile deformation [J]. Acta Metall. Sin., 2013, 49: 1
23 鲁法云, 杨 平, 孟 利等. Fe-22Mn TRIP/TWIP钢拉伸过程组织、性能及晶体学行为分析 [J]. 金属学报, 2013, 49: 1
24 Yen H W, Ooi S W, Eizadjou M, et al. Role of stress-assisted martensite in the design of strong ultrafine-grained duplex steels [J]. Acta Mater., 2015, 82: 100
25 Bian H X. The research of plastic instability on austenitic stainless steel during hot deformation [D]. Lanzhou: Lanzhou University of Technology, 2014
25 边红霞. 奥氏体不锈钢热变形过程中的塑性失稳研究 [D]. 兰州: 兰州理工大学, 2014
26 Sun P L, Cerreta E K, Bingert J F, et al. Enhanced tensile ductility through boundary structure engineering in ultrafine-grained aluminum [J]. Mater. Sci. Eng., 2007, A464: 343
27 Chen J H, Cao R. Micromechanism of cleavage fracture of weld metals [J]. Acta Metall. Sin., 2017, 53: 1427
27 陈剑虹, 曹 睿. 焊缝金属解理断裂微观机理 [J]. 金属学报, 2017, 53: 1427
28 Moallemi M, Zarei-Hanzaki A, Baghbadorani H S. Evolution of microstructure and mechanical properties in a cold deformed nitrogen bearing TRIP-assisted duplex stainless steel after reversion annealing [J]. Mater. Sci. Eng., 2017, A683: 83
29 Zhang W, Hu J C. Effect of annealing temperature on transformation induced plasticity effect of a lean duplex stainless steel [J]. Mater. Charact., 2013, 79: 37
[1] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[2] 王滨, 牛梦超, 王威, 姜涛, 栾军华, 杨柯. Cu马氏体时效不锈钢的组织与强韧性[J]. 金属学报, 2023, 59(5): 636-646.
[3] 任平, 陈兴品, 王存宇, 俞峰, 曹文全. 预变形和双级时效对Fe-30Mn-11Al-1.2C奥氏体低密度钢显微组织和力学性能的影响[J]. 金属学报, 2022, 58(6): 771-780.
[4] 沈国慧, 胡斌, 杨占兵, 罗海文. 回火温度对含 δ 铁素体高铝中锰钢力学性能和显微组织的影响[J]. 金属学报, 2022, 58(2): 165-174.
[5] 陈果, 王新波, 张仁晓, 马成悦, 杨海峰, 周利, 赵运强. 搅拌头转速对2507双相不锈钢搅拌摩擦加工组织及性能的影响[J]. 金属学报, 2021, 57(6): 725-735.
[6] 倪珂, 杨银辉, 曹建春, 王刘行, 刘泽辉, 钱昊. 18.7Cr-1.0Ni-5.8Mn-0.2NNi型双相不锈钢的大变形热压缩软化行为[J]. 金属学报, 2021, 57(2): 224-236.
[7] 李索, 陈维奇, 胡龙, 邓德安. 加工硬化和退火软化效应对316不锈钢厚壁管-管对接接头残余应力计算精度的影响[J]. 金属学报, 2021, 57(12): 1653-1666.
[8] 邓亚辉, 杨银辉, 蒲超博, 倪珂, 潘晓宇. Mn23%CrNi型双相不锈钢高温拉伸行为的影响[J]. 金属学报, 2020, 56(7): 949-959.
[9] 王世宏,李健,葛昕,柴锋,罗小兵,杨才福,苏航. γ/ε双相Fe-19Mn合金在拉伸变形过程中的组织演变和加工硬化行为[J]. 金属学报, 2020, 56(3): 311-320.
[10] 王桂芹,王琴,车宏龙,李亚军,雷明凯. Si对铸造超高铬高碳双相钢组织及性能的影响[J]. 金属学报, 2020, 56(3): 278-290.
[11] 邓亚辉,杨银辉,曹建春,钱昊. 23Cr-2.2Ni-6.3Mn-0.26NNi型双相不锈钢动态再结晶行为研究[J]. 金属学报, 2019, 55(4): 445-456.
[12] 田亚强,田耕,郑小平,陈连生,徐勇,张士宏. 淬火配分贝氏体钢不同位置残余奥氏体C、Mn元素表征及其稳定性[J]. 金属学报, 2019, 55(3): 332-340.
[13] 陈雷, 郝硕, 邹宗园, 韩舒婷, 张荣强, 郭宝峰. TRIP型双相不锈钢Fe-19.6Cr-2Ni-2.9Mn-1.6Si在循环变形条件下的力学特性[J]. 金属学报, 2019, 55(12): 1495-1502.
[14] 陈雷, 郝硕, 梅瑞雪, 贾伟, 李文权, 郭宝峰. 节约型双相不锈钢TRIP效应致塑性增量及其固溶温度依赖性[J]. 金属学报, 2019, 55(11): 1359-1366.
[15] 苏煜森, 杨银辉, 曹建春, 白于良. 节Ni型2101双相不锈钢的高温热加工行为研究[J]. 金属学报, 2018, 54(4): 485-493.