Please wait a minute...
金属学报  2018, Vol. 54 Issue (12): 1818-1824    DOI: 10.11900/0412.1961.2018.00256
  本期目录 | 过刊浏览 |
高强韧Ti-Ni基块体金属玻璃复合材料高温变形行为
赵燕春1(), 孙浩1, 李春玲1,2, 蒋建龙1, 毛瑞鹏1, 寇生中1, 李春燕1
1 兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室 兰州 730050
2 兰州理工大学机电工程学院 兰州 730050
High Temperature Deformation Behavior of High Strength and Toughness Ti-Ni Base Bulk Metallic Glass Composites
Yanchun ZHAO1(), Hao SUN1, Chunling LI1,2, Jianlong JIANG1, Ruipeng MAO1, Shengzhong KOU1, Chunyan LI1
1 State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
2 College of Mechano-Electronic Engineering, Lanzhou University of Technology, Lanzhou 730050, China
全文: PDF(3456 KB)   HTML
摘要: 

采用水冷Cu坩埚悬浮熔炼-Cu模吸铸法制备了 Ti-Ni基块体金属玻璃复合材料(BMGCs)试棒,研究了合金的微观组织、热力学行为以及室温和高温力学性能。结果表明,该铸态合金组织由非晶基体和过冷奥氏体及热致马氏体组成,且晶体相尺寸由表及里增大。在室温压应力加载时,合金表现出优异的综合力学性能,其屈服强度为1286 MPa,断裂强度为2256 MPa,且塑性应变为12.2%。在过冷液相区压应力加载时,合金在高的变形温度和低应变速率下,表现出近Newtonian流变特征,其最佳变形温度为T>480 ℃且与过冷液相区(SLR)的交集部分。温度为560 ℃、应变速率为5×10-4 s-1时,合金应力敏感指数m和能量耗散率ψ分别为0.81和0.895。

关键词 块体金属玻璃复合材料形状记忆晶相力学行为高温变形流变性能    
Abstract

Room-temperature brittleness and strain-softening during deformation of bulk metallic glasses, and limited processability of shape memory alloys have been stumbling blocks for their advanced functional structural applications. To solve the key scientific problems, a new shape memory bulk metallic glass based composite, through the approach using transformation-induced plasticity (TRIP) effect of shape memory alloys to enhance both ductility and work-hardening capability of metallic glasses, and superplasticity of bulk metallic glass in supercooled liquid region to realize near net forming, was developed in this work. And the Ti-Ni base bulk metallic glass composites (BMGCs) rods were prepared by the levitation suspend melting-water cooled Cu mold process. Microstructure, thermal behavior, mechanical properties and high temperature deformation behavior of the alloy were investigated. The results show that the as-cast alloy microstructure consists of amorphous matrix, undercooled austenite and thermally-induced martensite. Besides, the size of the crystal phase precipitated on the amorphous matrix increases from the surface to the inside. The alloy exhibits excellent comprehensive mechanical properties at room temperature. The yield strength, fracture strength and the plastic strain of alloy are up to 1286 MPa, 2256 MPa and 12.2%, respectively. Under compressive loading in the supercooled liquid region, the composite exhibits approximate Newtonian behavior at lower strain rate in higher deformation temperature, and the optimum deformation temperature is T>480 ℃ and the intersection part with supercooled liquid region (SLR). When the temperature is 560 ℃ and the strain rate is 5×10-4 s-1, the stress sensitivity index m and the energy dissipation rate ψ are 0.81 and 0.895, respectively. Furthermore, the volume of activation is quantified to characterize the rheological behavior.

Key wordsbulk metallic glass composite    shape-memory crystalline phase    mechanical behavior    high temperature deformation    rheological property
收稿日期: 2018-06-11      出版日期: 2018-07-23
ZTFLH:  TG139.8  
基金资助:国家自然科学基金项目No.51661017以及甘肃省杰出青年基金项目No.17JR5RA108
作者简介:

作者简介 赵燕春,女,1984年生,副教授,博士

引用本文:

赵燕春, 孙浩, 李春玲, 蒋建龙, 毛瑞鹏, 寇生中, 李春燕. 高强韧Ti-Ni基块体金属玻璃复合材料高温变形行为[J]. 金属学报, 2018, 54(12): 1818-1824.
Yanchun ZHAO, Hao SUN, Chunling LI, Jianlong JIANG, Ruipeng MAO, Shengzhong KOU, Chunyan LI. High Temperature Deformation Behavior of High Strength and Toughness Ti-Ni Base Bulk Metallic Glass Composites. Acta Metall Sin, 2018, 54(12): 1818-1824.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2018.00256      或      http://www.ams.org.cn/CN/Y2018/V54/I12/1818

图1  (Ti0.5Ni0.5)80Cu20铸态和加载断裂后试样的XRD谱
图2  (Ti0.5Ni0.5)80Cu20铸态试样的TEM和HRTEM像
图3  (Ti0.5Ni0.5)80Cu20铸态试样不同区域的OM像
图4  (Ti0.5Ni0.5)80Cu20试样室温工程应力-应变曲线
图5  (Ti0.5Ni0.5)80Cu20试样的DSC曲线
图6  (Ti0.5Ni0.5)80Cu20试样不同应变速率不同变形温度的压缩真应力-真应变曲线
Strain rate / s-1 480 ℃ 520 ℃ 560 ℃
5×10-4 807.1 694.0 490.0
1×10-3 974.2 782.0 579.5
5×10-3 1105.8 894.0 700.0
1×10-2 1177.6 941.0 760.0
表1  (Ti0.5Ni0.5)80Cu20试样不同变形条件下的峰值应力
图7  (Ti0.5Ni0.5)80Cu20试样不同温度时的流变应力-应变速率双对数关系
Strain rate / s-1 480 ℃ 520 ℃ 560 ℃
5×10-4 0.65 0.70 0.81
1×10-3 0.58 0.63 0.69
5×10-3 0.34 0.41 0.51
1×10-2 0.21 0.25 0.30
表2  (Ti0.5Ni0.5)80Cu20试样不同变形条件下的应变速率敏感指数m
图8  (Ti0.5Ni0.5)80Cu20试样在不同温度的黏度-应变速率关系曲线
[1] Greer A L.Metallic glasses[J]. Science, 1995, 267: 1947
[2] L?ffler J F.Bulk metallic glasses[J]. Intermetallics, 2003, 11: 529
[3] Schuh C A, Hufnagel T C, Ramamurty U.Mechanical behavior of amorphous alloys[J]. Acta Mater., 2007, 55: 4067
[4] Wang W H.Bulk metallic glasses with functional physical properties[J]. Adv. Mater., 2009, 21: 4524
[5] Schroers J.Processing of bulk metallic glass[J]. Adv. Mater., 2010, 22: 1566
[6] Cao Q P, Liu J W, Yang K J, et al.Effect of pre-existing shear bands on the tensile mechanical properties of a bulk metallic glass[J]. Acta Mater., 2010, 56: 1276
[7] Liu Y H, Wang G, Wang R J, et al.Super plastic bulk metallic glasses at room temperature[J]. Science, 2007, 315: 1385
[8] Chen L Y, Fu Z D, Zhang G Q, et al.New class of plastic bulk metallic glass[J]. Phys. Rev. Lett., 2008, 100: 075501
[9] Hofmann D C, Suh J Y, Wiest A, et al.Designing metallic glass matrix composites with high toughness and tensile ductility[J]. Nature, 2008, 451: 1085
[10] Hofmann D C.Shape memory bulk metallic glass composites[J]. Science, 2010, 329: 1294
[11] Gargarella P, Pauly S, Song K K, et al.Ti-Cu-Ni shape memory bulk metallic glass composites[J]. Acta Mater., 2013, 61: 151
[12] Jiang M Q, Dai L H.On the origin of shear banding instability in metallic glasses[J]. J. Mech. Phys. Solids, 2009, 57: 1267
[13] Sun J F, Huang Y J, Shen J, et al.Superplastic formability of a Zr-Ti-Ni-Cu-Be bulk metallic glass[J]. J. Alloys Compd., 2006, 415: 198
[14] Liu M C, Du X H, Lin I C, et al.Superplastic-like deformation in metallic amorphous/crystalline nanolayered micropillars[J]. Intermetallics, 2012, 30: 30
[15] Yao K F, Ruan F, Yang Y Q, et al.Superductile bulk metallic glass[J]. Appl. Phys. Lett., 2006, 88: 122106
[16] Ferenc J, Erenc-S?dziak T, Kowalczyk M, et al.The supercooled liquid region span of Fe-based bulk metallic glasses[J]. J. Alloys Compd., 2010, 495: 327
[17] Wang Q, Wang D K, Fu T, et al.High temperature homogeneous plastic flow behavior of a Zr based bulk metallic glass matrix composite[J]. J. Alloys Compd., 2010, 495: 50
[18] Bae D H, Lim H K, Kim S H, et al.Mechanical behavior of a bulk Cu-Ti-Zr-Ni-Si-Sn metallic glass forming nano-crystal aggregate bands during deformation in the supercooled liquid region[J]. Acta Mater., 2002, 50: 1749
[19] Guo S F, Chan K C, Chen Q, et al.Tensile plastic deformation of a Zr-based bulk metallic glass composite in the supercooled liquid region[J]. Scr. Mater., 2009, 60: 369
[20] Wu Y, Ma D, Li Q K, et al.Transformation-induced plasticity in bulk metallic glass composites evidenced by in-situ neutron diffraction[J]. Acta Mater., 2017, 124: 478
[21] Wu Y, Bei H, Wang Y L, et al.Deformation-induced spatiotemporal fluctuation, evolution and localization of strain fields in a bulk metallic glass[J]. Int. J. Plast., 2015, 71: 136
[22] Huang Y J, Shen J, Sun Y, et al.High temperature deformation behaviors of Ti40Zr25Ni3Cu12Be20 bulk metallic glass[J]. J. Alloys Compd., 2010, 504(suppl.1): S82
[23] Chen G, Hao Y F, Chen X W, et al.Compressive behaviour of tungsten fibre reinforced Zr-based metallic glass at different strain rates and temperatures[J]. Int. J. Impact Eng., 2017, 106: 110
[24] Cheng S R, Wang C J, Ma M Z, et al.Mechanism for microstructural evolution induced by high temperature deformation in Zr-based bulk metallic glasses[J]. J. Alloys Compd., 2016, 676: 299
[25] Jiang M Q, Wilde G, Dai L H.Origin of stress overshoot in amorphous solids[J]. Mech. Mater., 2015, 81: 72
[26] Kim W J, Ma D S, Jeong H G.Superplastic flow in a Zr65Al10Ni10Cu15 metallic glass crystallized during deformation in a supercooled liquid region[J]. Scr. Mater., 2003, 49: 1067
[27] Nieh T G, Wadsworth J, Liu C T, et al.Plasticity and structural instability in a bulk metallic glass deformed in the supercooled liquid region[J]. Acta Mater., 2001, 49: 2887
[28] Yuan X Y, Chen L Q.Hot deformation at elevated temperature and recrystallization behavior of a high manganese austenitic TWIP steel[J]. Acta Metall. Sin., 2015, 51: 651(袁晓云, 陈礼清. 一种高锰奥氏体TWIP钢的高温热变形与再结晶行为[J]. 金属学报, 2015, 51: 651)
[29] Wang T, Wan Z P, Sun Y, et al.Dynamic softening behavior and microstructure evolution of nickel base superalloy[J]. Acta Metall. Sin., 2018, 54: 84(王涛, 万志鹏, 孙宇等. 镍基变形高温合金动态软化行为与组织演变规律研究[J]. 金属学报, 2018, 54: 84)
[30] Ghidelli M, Idrissi H, Gravier S, et al.Homogeneous flow and size dependent mechanical behavior in highly ductile Zr65Ni35 metallic glass films[J]. Acta Mater., 2017, 131: 246
[31] Liu Q, Xia C, Liu X D.The m-C-δ or m-k-δ relations of superplasticity of Zn-5%Al eutectic alloy[J]. Acta Metall. Sin., 1985, 21: 111(刘勤, 夏锄, 刘晓东. Zn-5%Al合金超塑性的m-C-δ (或m-k-δ)关系[J]. 金属学报, 1985, 21: 111)
[32] Yao Z F, Qiao J C, Pelletier J M, et al.High temperature deformation behaviors of the Zr63.36Cu14.52Ni10.12Al12 bulk metallic glass[J]. J. Mater. Sci., 2016, 51: 4079
[33] Zhang X Y, Yuan Z Z, Feng X L, et al.Homogeneous viscous flow behavior of a Cu-Zr based bulk metallic glass composites[J]. Mater. Sci. Eng., 2015, A620: 352
[34] Kawamura Y, Nakamura T, Inoue A.Superplasticity in Pd40Ni40P20 metallic glass[J]. Scr. Mater., 1998, 39: 301
[35] Spaepen F.A microscopic mechanism for steady state inhomogeneous flow in metallic glasses[J]. Acta Metall., 1977, 25: 407
[36] Cui J, Li J S, Wang J, et al.Deformation behavior of a Ti-based bulk metallic glass composite in the supercooled liquid region[J]. Mater. Des., 2015, 90: 595
[37] Hajlaoui K, Yavari A R, Lemoulec A, et al.Plasticity induced by nanoparticle dispersions in bulk metallic glasses[J]. J. Non-Cryst. Solids, 2007, 353: 327
[38] Inoue A, Fan C, Saida J, et al.High-strength Zr-based bulk amorphous alloys containing nanocrystalline and nanoquasicrystalline particles[J]. Sci. Technol. Adv. Mater., 2000, 1: 73
[1] 涂爱东, 滕春禹, 王皞, 徐东生, 傅耘, 任占勇, 杨锐. Ti-Al合金γ/α2界面结构及拉伸变形行为的分子动力学模拟[J]. 金属学报, 2019, 55(2): 291-298.
[2] 张丽丽, 江鸿翔, 赵九洲, 李璐, 孙倩. 溶质Ti对Al-Ti-B中间合金细化Al影响的新认识:TiB2粒子的动力学行为及溶质Ti的影响[J]. 金属学报, 2017, 53(9): 1091-1100.
[3] 李飞,张华煜,何文武,陈慧琴,郭会光. Mn18Cr18N奥氏体不锈钢的压缩拉伸连续加载变形行为*[J]. 金属学报, 2016, 52(8): 956-964.
[4] 金涛,周亦胄,王新广,刘金来,孙晓峰,胡壮麒. 先进镍基单晶高温合金组织稳定性及力学行为的研究进展[J]. 金属学报, 2015, 51(10): 1153-1162.
[5] 梁后权, 郭鸿镇, 宁永权, 姚泽坤, 赵张龙. 基于软化机制的TC18钛合金本构关系研究*[J]. 金属学报, 2014, 50(7): 871-878.
[6] 安彤,秦飞,王晓亮. 焊锡接点IMC层微结构演化与力学行为[J]. 金属学报, 2013, 49(9): 1137-1142.
[7] 郑成思,李龙飞,杨王玥,孙祖庆. 微观组织对共析钢室温加工硬化行为的影响[J]. 金属学报, 2013, 49(3): 257-264.
[8] 孔凡涛,崔宁,陈玉勇,熊宁宁. Ti-43Al-9V-Y合金的高温变形行为研究[J]. 金属学报, 2013, 49(11): 1363-1368.
[9] 朱传琳,张俊宝,程从前,赵杰. 变形温度对冷喷涂304不锈钢涂层材料高温变形行为的影响[J]. 金属学报, 2013, 49(10): 1275-1280.
[10] 贾斌 彭艳. 铌微合金钢高温变形的本构关系[J]. 金属学报, 2011, 47(4): 507-512.
[11] 方轶琉 刘振宇 张维娜 王国栋 宋红梅 江来珠. 节约型双相不锈钢2101高温变形过程中微观组织演化[J]. 金属学报, 2010, 46(6): 641-646.
[12] 申坤 汪明朴 郭明星 李树梅. Cu--0.23%Al2O3弥散强化铜合金的高温变形特性研究[J]. 金属学报, 2009, 45(5): 597-604.
[13] 王书晗 刘振宇 张维娜 王国栋. TWIP钢不同温度变形的力学性能变化规律及机理研究[J]. 金属学报, 2009, 45(5): 573-578.
[14] 刘伟 李志斌 王翔 邹骅 王立新.  应变速率对奥氏体不锈钢应变诱发α'--马氏体转变和力学行为的影响[J]. 金属学报, 2009, 45(3): 285-291.
[15] 朱维; 韩志强; 贾湛湛; 赵海东; 柳百成 . 挤压铸造铝合金弹粘塑性本构模型[J]. 金属学报, 2008, 44(4): 440-444 .