Please wait a minute...
金属学报  2018, Vol. 54 Issue (11): 1479-1489    DOI: 10.11900/0412.1961.2018.00247
  组织与结构 本期目录 | 过刊浏览 |
金属玻璃中隐藏在长时间尺度下的动力学行为及其对性能的影响
汪卫华1,2(), 罗鹏1,2()
1 中国科学院物理研究所极端条件物理重点实验室 北京 1001902
2 中国科学院大学 北京 100049
The Dynamic Behavior Hidden in the Long Time Scale of Metallic Glasses and Its Effect on the Properties
Weihua WANG1,2(), Peng LUO1,2()
1 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
全文: PDF(2652 KB)   HTML
摘要: 

金属玻璃微观结构无序,没有类似晶体材料中的缺陷,表现出一系列优异的力学和功能特性,具有广泛的应用前景。由于非晶结构上长程无序,难以建立结构和性能的关系。而弛豫动力学研究为认识金属玻璃提供了非常重要的窗口,对于理解其稳定性和形变行为极为关键,也一直是凝聚态物理和材料科学领域的核心问题。近年来,随着更多先进研究手段的使用和研究的不断深入,人们发现在玻璃态极长的时间跨度和不同空间尺度下蕴含着丰富的动力学行为,这些动力学模式之间彼此关联,同时也具有独特性。本文介绍了近期关于金属玻璃弛豫动力学研究的重要进展,及其对于认识和调控材料性能、优化材料制备等方面的影响。

关键词 金属玻璃弛豫动力学力学性能超稳定玻璃    
Abstract

Metallic glasses (MGs) have disordered microstructure and no defects like in crystalline materials and possess a suite of outstanding mechanical and functional properties, showing thus promising potential for wide applications. Due to the lack of long range structural order, it is fraught with difficulties to construct the structure-property relationship in amorphous materials. The study of relaxation dynamics provides a very important approach to understand MGs, and is vital to understand their stability and deformation behavior and remains a core issue in the field of condensed matter physics and materials science. In recent years, with the use of more advanced research methods and the deepening of research, it was found that there exists rich dynamics covered by the extremely wide time scale and the different length scales of glassy state. Different dynamic modes not only correlate with each other but also show distinction. This article reviews recent progress in the study of relaxation dynamics in MGs, and its role in understanding and modifying material properties and optimizing material preparation.

Key wordsmetallic glass    relaxation    dynamics    mechanical property    ultrastable glass
收稿日期: 2018-06-08      出版日期: 2018-07-19
ZTFLH:  TG139  
基金资助:国家自然科学基项目Nos.11790291、51571209和51461165101,国家重点基础研究发展计划项目No.2015CB856800,国家重点研发计划项目Nos.2016YFB0300501和2017YFB0903902,前沿科学关键研究项目No.QYZDY-SSW-JSC017,中科院战略重点研究项目No.XDPB0601
作者简介: 作者简介 汪卫华,男,1963年生,研究员,博士

引用本文:

汪卫华, 罗鹏. 金属玻璃中隐藏在长时间尺度下的动力学行为及其对性能的影响[J]. 金属学报, 2018, 54(11): 1479-1489.
Weihua WANG, Peng LUO. The Dynamic Behavior Hidden in the Long Time Scale of Metallic Glasses and Its Effect on the Properties. Acta Metall Sin, 2018, 54(11): 1479-1489.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2018.00247      或      http://www.ams.org.cn/CN/Y2018/V54/I11/1479

图1  Y60Ni20Al20金属玻璃的损耗模量(E")-温度(T)图谱[87]
图2  单步和两步退火条件下金属玻璃Boson峰强度和热力学能态表现出一致的演化行为[106]
图3  通过XPCS实验测量的Mg65Cu25Y10金属玻璃在不同温度下的关联函数和弛豫指数[109]
图4  4种金属玻璃在不同温度下的流变规律[120]
图5  Zr44Ti11Cu10Ni10Be25金属玻璃在不同温度下的应力弛豫曲线[121]
图6  金属玻璃及其高温前驱液体的动力学行为的Arrhenius图[121]
图7  不同气相沉积速率以及传统液体冷却制备的金属玻璃的Tg对比(插图为晶化温度Tx的对比)[137]
图8  表面弛豫与α和β弛豫的比较[137]
[1] Morey G W. The Properties of Glass [M]. 2nd Ed., New York:Reinhold, 1954, Vol.124
[2] Klement W, Willens R H, Duwez P.Non-crystalline structure in solidified gold-silicon alloys[J]. Nature, 1960, 187: 869
[3] Chen H S.Thermodynamic considerations on the formation and stability of metallic glasses[J]. Acta Metall., 1974, 22: 1505
[4] Kui H W, Greer A L, Turnbull D.Formation of bulk metallic glass by fluxing[J]. Appl. Phys. Lett., 1984, 45: 615
[5] Drehman A J, Greer A L, Turnbull D.Bulk formation of a metallic glass: Pd40Ni40P20[J]. Appl. Phys. Lett., 1982, 41: 716
[6] Inoue A.Stabilization of metallic supercooled liquid and bulk amorphous alloys[J]. Acta Mater., 2000, 48: 279
[7] Inoue A, Zhang T, Masumoto T.Al-La-Ni amorphous alloys with a wide supercooled liquid region[J]. Mater. Trans. JIM, 1989, 30: 965
[8] Inoue A, Nakamura T, Nishiyama N, et al.Mg-Cu-Y bulk amorphous alloys with high tensile strength produced by a high-pressure die casting method[J]. Mater. Trans. JIM, 1992, 33: 937
[9] Inoue A, Zhang T, Nishiyama N, et al.Preparation of 16 mm diameter rod of amorphous Zr65Al7.5Ni10Cu17.5 alloy[J]. Mater. Trans. JIM, 1993, 34: 1234
[10] Inoue A.High strength bulk amorphous alloys with low critical cooling rates (overview)[J]. Mater. Trans. JIM, 1995, 36: 866
[11] Perker A, Johnson W L.A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5[J]. Appl. Phys. Lett., 1993, 63: 2342
[12] Wang W H, Dong C, Shek C H.Bulk metallic glasses[J]. Mater. Sci. Eng., 2004, R44: 45
[13] Johnson W L.Bulk glass-forming metallic alloys: Science and technology[J]. MRS Bull., 1999, 24: 42
[14] Wang W H.Roles of minor additions in formation and properties of bulk metallic glasses[J]. Prog. Mater. Sci., 2007, 52: 540
[15] Na J H, Demetriou M D, Floyd M, et al.Compositional landscape for glass formation in metal alloys[J]. Proc. Natl. Acad. Sci. USA, 2014, 111: 9031
[16] Greer A L, Ma E.Bulk metallic glasses: At the cutting edge of metals research[J]. MRS Bull., 2007, 32: 611
[17] Li Y L, Zhao S F, Liu Y H, et al.How many bulk metallic glasses are there?[J]. ACS Comb. Sci., 2017, 19: 687
[18] Ding S Y, Liu Y H, Li Y L, et al.Combinatorial development of bulk metallic glasses[J]. Nat. Mater., 2014, 13: 494
[19] Gossett E M, Scanley E B, Liu Y H, et al.Computational nanocharacterization for combinatorially developed bulk metallic glass[J]. Int. J. High Speed Electron. Syst., 2015, 24: 1520012
[20] Liu J B, Liu Y H, Gong P, et al.Combinatorial exploration of color in gold-based alloys[J]. Gold Bull., 2015, 48: 111
[21] Li J Y, Stein H S, Sliozberg K, et al.Combinatorial screening of Pd-based quaternary electrocatalysts for oxygen reduction reaction in alkaline media[J]. J. Mater. Chem., 2017, 5A: 67
[22] Inoue A, Shen B L, Koshiba H, et al.Cobalt-based bulk glassy alloy with ultrahigh strength and soft magnetic properties[J]. Nat. Mater., 2003, 2: 661
[23] Chang C T, Shen B L, Inoue A.FeNi-based bulk glassy alloys with superhigh mechanical strength and excellent soft-magnetic properties[J]. Appl. Phys. Lett., 2006, 89: 051912
[24] Liu Y H, Wang G, Pan M X, et al.Deformation behaviors and mechanism of Ni-Co-Nb-Ta bulk metallic glasses with high strength and plasticity[J]. J. Mater. Res., 2007, 22: 869
[25] Ma H, Xu J, Ma E.Mg-based bulk metallic glass composites with plasticity and high strength[J]. Appl. Phys. Lett., 2003, 83: 2793
[26] Demetriou M D, Launey M E, Garrett G, et al.A damage-tolerant glass[J]. Nat. Mater., 2011, 10: 123
[27] Wang W H.The elastic properties, elastic models and elastic perspectives of metallic glasses[J]. Prog. Mater. Sci., 2012, 57: 487
[28] Tian L, Cheng Y Q, Shan Z W, et al.Approaching the ideal elastic limit of metallic glasses[J]. Nat. Commun., 2012, 3: 609
[29] Conner R D, Dandilker R B, Struggs V, et al.Dynamic deformation behavior of tungsten-fiber/metallic-glass matrix composites[J]. Int. J. Impact Eng., 2000, 24: 435
[30] Grimberg A, Baur H, Bochsler P, et al.Solar wind neon from genesis: Implications for the lunar noble gas record[J]. Science, 2006, 314: 1133
[31] Wang W H.Bulk metallic glasses with functional physical properties[J]. Adv. Mater., 2009, 21: 4524
[32] Hasegawa R, Azuma D.Impacts of amorphous metal-based transformers on energy efficiency and environment[J]. J. Magn. Magn. Mater., 2008, 320: 2451
[33] Gutfleisch O, Willard M A, Brück E, et al.Magnetic materials and devices for the 21st century: Stronger, lighter, and more energy efficient[J]. Adv. Mater., 2011, 23: 821
[34] Herzer G.Modern soft magnets: Amorphous and nanocrystalline materials[J]. Acta Mater., 2013, 61: 718
[35] Nieh T G, Wadsworth J.Homogeneous deformation of bulk metallic glasses[J]. Scr. Mater., 2006, 54: 387
[36] Schroers J.The superplastic forming of bulk metallic glasses[J]. JOM, 2005, 57(5): 35
[37] Inoue A, Shen B L, Takeuchi A.Developments and applications of bulk glassy alloys in late transition metal base system[J]. Mater. Trans. JIM, 2006, 47: 1275
[38] Chu J P, Wijaya H, Wu C W, et al.Nanoimprint of gratings on a bulk metallic glass[J]. Appl. Phys. Lett., 2007, 90: 034101
[39] Tsai P H, Li T H, Hsu K T, et al.Effect of coating thickness on the cutting sharpness and durability of Zr-based metallic glass thin film coated surgical blades[J]. Thin Solid Films, 2016, 618: 36
[40] Chu J P, Yu C C, Tanatsugu Y, et al.Non-stick syringe needles: Beneficial effects of thin film metallic glass coating[J]. Sci. Rep., 2016, 6: 31847
[41] Hu Y C, Wang Y Z, Su R, et al.A highly efficient and self-stabilizing metallic-glass catalyst for electrochemical hydrogen generation[J]. Adv. Mater., 2016, 28: 10293
[42] Doubek G, Sekol R C, Li J Y, et al.Guided evolution of bulk metallic glass nanostructures: A platform for designing 3D electrocatalytic surfaces[J]. Adv. Mater., 2016, 28: 1940
[43] Greer A L, Cheng Y Q, Ma E.Shear bands in metallic glasses[J]. Mater. Sci. Eng., 2013, R74: 71
[44] Schroers J, Johnson W L.Ductile bulk metallic glass[J]. Phys. Rev. Lett., 2004, 93: 255506
[45] Das J, Tang M B, Kim K B, et al."Work-hardenable" ductile bulk metallic glass[J]. Phys. Rev. Lett., 2005, 94: 205501
[46] Liu Y H, Wang G, Wang R J, et al.Super plastic bulk metallic glasses at room temperature[J]. Science, 2007, 315: 1385
[47] Guo H, Yan P F, Wang Y B, et al.Tensile ductility and necking of metallic glass[J]. Nat. Mater., 2007, 6: 735
[48] Jang D, Greer J R.Transition from a strong-yet-brittle to a stronger-and-ductile state by size reduction of metallic glasses[J]. Nat. Mater., 2010, 9: 215
[49] Wang Z T, Pan J, Li Y, et al.Densification and strain hardening of a metallic glass under tension at room temperature[J]. Phys. Rev. Lett., 2013, 111: 135504
[50] Gao M, Dong J, Huan Y, et al.Macroscopic tensile plasticity by scalarizating stress distribution in bulk metallic glass[J]. Sci. Rep., 2016, 6: 21929
[51] Qu R T, Zhang Q S, Zhang Z F.Achieving macroscopic tensile plasticity of monolithic bulk metallic glass by surface treatment[J]. Scr. Mater., 2013, 68: 845
[52] Sarac B, Schroers J.Designing tensile ductility in metallic glasses[J]. Nat. Commun., 2013, 4: 2158
[53] Qu R T, Zhao J X, Stoica M, et al.Macroscopic tensile plasticity of bulk metallic glass through designed artificial defects[J]. Mater. Sci. Eng., 2012, A534: 365
[54] Hofmann D C, Suh J Y, Wiest A, et al.Designing metallic glass matrix composites with high toughness and tensile ductility[J]. Nature, 2008, 451: 1085
[55] Pauly S, Gorantla S, Wang G, et al.Transformation-mediated ductility in CuZr-based bulk metallic glasses[J]. Nat. Mater., 2010, 9: 473
[56] Hofmann D C, Suh J Y, Wiest A, et al.Development of tough, low-density titanium-based bulk metallic glass matrix composites with tensile ductility[J]. Proc. Natl. Acad. Sci. USA, 2008, 105: 20136
[57] Wu Y, Xiao Y H, Chen G L, et al.Bulk metallic glass composites with transformation-mediated work-hardening and ductility[J]. Adv. Mater., 2010, 22: 2770
[58] Wu Y, Zhou D Q, Song W L, et al.Ductilizing bulk metallic glass composite by tailoring stacking fault energy[J]. Phys. Rev. Lett., 2012, 109: 245506
[59] Wu Y, Wang H, Wu H H, et al.Formation of Cu-Zr-Al bulk metallic glass composites with improved tensile properties[J]. Acta Mater., 2011, 59: 2928
[60] Ichitsubo T, Matsubara E, Yamamoto T, et al.Microstructure of fragile metallic glasses inferred from ultrasound-accelerated crystallization in Pd-based metallic glasses[J]. Phys. Rev. Lett., 2005, 95: 245501
[61] Ye J C, Lu J, Liu C T, et al.Atomistic free-volume zones and inelastic deformation of metallic glasses[J]. Nat. Mater., 2010, 9: 619
[62] Dmowski W, Iwashita T, Chuang C P, et al.Elastic heterogeneity in metallic glasses[J]. Phys. Rev. Lett., 2010, 105: 205502
[63] Liu Y H, Wang D, Nakajima K, et al.Characterization of nanoscale mechanical heterogeneity in a metallic glass by dynamic force microscopy[J]. Phys. Rev. Lett., 2011, 106: 125504
[64] Wagner H, Bedorf D, Küchemann S, et al.Local elastic properties of a metallic glass[J]. Nat. Mater., 2011, 10: 439
[65] Zhu F, Nguyen H K, Song S X, et al.Intrinsic correlation between β-relaxation and spatial heterogeneity in a metallic glass[J]. Nat. Commun., 2016, 7: 11516
[66] Zhu F, Hirata A, Liu P, et al.Correlation between local structure order and spatial heterogeneity in a metallic glass[J]. Phys. Rev. Lett., 2017, 119: 215501
[67] Wang Z, Wen P, Huo L S, et al.Signature of viscous flow units in apparent elastic regime of metallic glasses[J]. Appl. Phys. Lett., 2012, 101: 121906
[68] Lewandowsli J J, Greer A L.Temperature rise at shear bands in metallic glasses[J]. Nat. Mater., 2006, 5: 15
[69] Guan P F, Fujita T, Hirata A, et al.Structural origins of the excellent glass forming ability of Pd40Ni40P20[J]. Phys. Rev. Lett., 2012, 108: 175501
[70] Debenedetti P G, Stillinger F H.Supercooled liquids and the glass transition[J]. Nature, 2001, 410: 259
[71] Bengtzelius U, G?tze W, Sj?lander A.Dynamics of supercooled liquids and the glass transition[J]. J. Phys., 1984, 17C: 5915
[72] G?tze W, Sj?gren L.Relaxation processes in supercooled liquids[J]. Rep. Prog. Phys., 1992, 55: 241
[73] Bartsch A, R?tzke K, Meyer A, et al.Dynamic arrest in multicomponent glass-forming alloys[J]. Phys. Rev. Lett., 2010, 104: 195901
[74] Cicerone M T, Ediger M D.Enhanced translation of probe molecules in supercooled oterphenyl: Signature of spatially heterogeneous dynamics?[J]. J. Chem. Phys., 1996, 104: 7210
[75] Ediger M D.Spatially heterogeneous dynamics in supercooled liquids[J]. Annu. Rev. Phys. Chem., 2000, 51: 99
[76] Fujara F, Geil B, Sillescu H H, et al.Translational and rotational diffusion in supercooled orthoterphenyl close to the glass transition[J]. Z. Phys., 1992, 88B: 195
[77] Ediger M D, Angell C A, Nagel S R.Supercooled liquids and glasses[J]. J. Phys. Chem., 1996, 100: 13200
[78] Biroli G, Bouchaud J-P.Critical fluctuations and breakdown of the Stokes-Einstein relation in the mode-coupling theory of glasses[J]. J. Phys.: Condens. Matter, 2007, 19: 205101
[79] Harmon J S, Demetriou M D, Johnson W L.Aneleastic to plastic transition in metallic glass-forming liquids[J]. Phys. Rev. Lett., 2007, 99: 135502
[80] Yu H B, Wang W H, Bai H Y, et al.Relating activation of shear transformation zones to beta relaxations in metallic glasses[J]. Phys. Rev., 2010, 81B: 220201
[81] Lu Z, Jiao W, Wang W H, et al.Flow unit perspective on room temperature homogeneous plastic deformation in metallic glasses[J]. Phys. Rev. Lett., 2014, 113: 045501
[82] Yu H B, Shen X, Wang Z, et al.Tensile plasticity in metallic glasses with pronounced b relaxations[J]. Phys. Rev. Lett., 2012, 108: 015504
[83] Wang Z, Sun B A, Bai H Y, et al.Evolution of hidden localized flow during glass-to-liquid transition in metallic glass[J]. Nat. Commun., 2014, 5: 5823
[84] Zhu Z G, Li Y Z, Wang Z, et al.Compositional origin of unusual β-relaxation properties in La-Ni-Al metallic glasses[J]. J. Chem. Phys., 2014, 141: 084506
[85] Wang Z, Yu H B, Wen P, et al.Pronounced slow β-relaxation in La-based bulk metallic glasses[J]. J. Phys.: Condens. Matter, 2011, 23: 142202
[86] Yu H B, Wang W H, Bai H Y, et al.The β-relaxation in metallic glasses[J]. Natl. Sci. Rev., 2014, 1: 429
[87] Luo P, Lu Z, Zhu Z G, et al.Prominent β-relaxations in yttrium based metallic glasses[J]. Appl. Phys. Lett., 2015, 106: 031907
[88] Wang Q, Zhang S T, Yang Y, et al.Unusual fast secondary relaxation in metallic glass[J]. Nat. Commun., 2015, 6: 7876
[89] Zhao L Z, Xue R J, Zhu Z G, et al.A fast dynamic mode in rare earth based glasses[J]. J. Chem. Phys., 2016, 144: 204507
[90] Wang Q, Liu J J, Ye Y F, et al.Universal secondary relaxation and unusual brittle-to-ductile transition in metallic glasses[J]. Mater. Today, 2017, 20: 293
[91] Küchemann S, Maa? R.Gamma relaxation in bulk metallic glasses[J]. Scr. Mater., 2017, 137: 5
[92] Jiang H Y, Luo P, Wen P, et al.The near constant loss dynamic mode in metallic glass[J]. J. Appl. Phys., 2016, 120: 145106
[93] Grigera T S, Martín-Mayor V, Parisi G, et al.Phonon interpretation of the 'boson peak' in supercooled liquids[J]. Nature, 2003, 422: 289
[94] Shintani H, Tanaka H.Universal link between the boson peak and transverse phonons in glass[J]. Nat. Mater., 2008, 7: 870
[95] Schober H R.Quasi-localized vibrations and phonon damping in glasses[J]. J. Non-Cryst. Solids, 2011, 357: 501
[96] Laird B B, Schober H R.Localized low-frequency vibrational modes in a simple model glass[J]. Phys. Rev. Lett., 1991, 66: 636
[97] Mitrofanov Y P, Peterlechner M, Divinski S V, et al.Impact of plastic deformation and shear band formation on the boson heat capacity peak of a bulk metallic glass[J]. Phys. Rev. Lett., 2014, 112: 135901
[98] Bünz J, Brink T, Tsuchiya K, et al.Low temperature heat capacity of a severely deformed metallic glass[J]. Phys. Rev. Lett., 2014, 112: 135501
[99] Huang B, Zhu Z G, Ge T P, et al.Hand in hand evolution of boson heat capacity anomaly and slow b-relaxation in La-based metallic glasses[J]. Acta Mater., 2016, 110: 73
[100] Angell C A.Formation of glasses from liquids and biopolymers[J]. Science, 1995, 267: 1924
[101] Sokolov A P, Rossler E, Kisliuk A, et al.Dynamics of strong and fragile glass formers: Differences and correlation with low-temperature properties[J]. Phys. Rev. Lett., 1993, 71: 2062
[102] Sokolov A P, Calemczuk R, Salce B, et al.Low-temperature anomalies in strong and fragile glass formers[J]. Phys. Rev. Lett., 1997, 78: 2405
[103] Li Y, Bai H Y, Wang W H, et al.Low-temperature specific-heat anomalies associated with the boson peak in CuZr-based bulk metallic glasses[J]. Phys. Rev., 2006, 74B: 052201
[104] Li Y, Yu P, Bai H Y.Study on the boson peak in bulk metallic glasses[J]. J. Appl. Phys., 2008, 104: 013520
[105] Yannopoulos S N, Papatheodorou G N.Critical experimental facts pertaining to models and associated universalities for low-frequency Raman scattering in inorganic glass formers[J]. Phys. Rev., 2000, 62B: 3728
[106] Luo P, Li Y Z, Bai H Y, et al.Memory effect manifested by a boson peak in metallic glass[J]. Phys. Rev. Lett., 2016, 116: 175901
[107] Ketov S V, Sun Y H, Nachum S, et al.Rejuvenation of metallic glasses by non-affine thermal strain[J]. Nature, 2015, 524: 200
[108] Li M X, Luo P, Sun Y T, et al.Significantly enhanced memory effect in metallic glass by multistep training[J]. Phys. Rev., 2017, 96B: 174204
[109] Ruta B, Chushkin Y, Monaco G, et al.Atomic-scale relaxation dynamics and aging in a metallic glass probed by X-ray photon correlation spectroscopy[J]. Phys. Rev. Lett., 2012, 109: 165701
[110] Grubel G, Zontone F.Correlation spectroscopy with coherent X-rays[J]. J. Alloys Compd., 2004, 362: 3
[111] Li Y Z, Zhao L Z, Wang C, et al.Communication: Non-monotonic evolution of dynamical heterogeneity in unfreezing process of metallic glasses[J]. J. Chem. Phys., 2015, 143: 041104
[112] Giordano V M, Ruta B.Unveiling the structural arrangements responsible for the atomic dynamics in metallic glasses during physical aging[J]. Nat. Commun., 2016, 7: 10344
[113] Evenson Z, Ruta B, Hechler S, et al.X-ray photon correlation spectroscopy reveals intermittent aging dynamics in a metallic glass[J]. Phys. Rev. Lett., 2015, 115: 175701
[114] Zanotto E D.Do cathedral glasses flow?[J]. Am. J. Phys., 1998, 66: 392
[115] Zanotto E D, Gupta P K.Do cathedral glasses flow?—Additional remarks[J]. Am. J. Phys., 1999, 67: 260
[116] Welch R C, Smith J R, Potuzak M, et al.Dynamics of glass relaxation at room temperature[J]. Phys. Rev. Lett., 2013, 110: 265901
[117] Phillips J C.Stretched exponential relaxation in molecular and electronic glasses[J]. Rep. Prog. Phys., 1996, 59: 1133
[118] Ruta B, Baldi G, Chushkin Y, et al.Revealing the fast atomic motion of network glasses[J]. Nat. Commun., 2014, 5: 3939
[119] Cangialosi D, Boucher V M, Alegría A, et al.Direct evidence of two equilibration mechanisms in glassy polymers[J]. Phys. Rev. Lett., 2013, 111: 095701
[120] Luo P, Lu Z, Li Y Z, et al.Probing the evolution of slow flow dynamics in metallic glasses[J]. Phys. Rev., 2016, 93B: 104204
[121] Luo P, Wen P, Bai H Y, et al.Relaxation decoupling in metallic glasses at low temperatures[J]. Phys. Rev. Lett., 2017, 118: 225901
[122] Luo P, Li M X, Jiang H Y, et al.Temperature dependent evolution of dynamic heterogeneity in metallic glass[J]. J. Appl. Phys., 2017, 121: 135104
[123] Fakhraai Z, Forrest J A.Measuring the surface dynamics of glassy polymers[J]. Science, 2008, 319: 600
[124] Chai Y, Salez T, McGraw J D, et al. A direct quantitative measure of surface mobility in a glassy polymer[J]. Science, 2014, 343: 994
[125] Zhu L, Brian C W, Swallen S F, et al.Surface self-diffusion of an organic glass[J]. Phys. Rev. Lett., 2011, 106: 256103
[126] Cao C R, Lu Y M, Bai H Y, et al.High surface mobility and fast surface enhanced crystallization of metallic glass[J]. Appl. Phys. Lett., 2015, 107: 141606
[127] Yang Z H, Fujii Y, Lee F K, et al.Glass transition dynamics and surface layer mobility in unentangled polystyrene films[J]. Science, 2010, 328: 1676
[128] Swallen S F, Kearns K L, Mapes M K, et al.Organic glasses with exceptional thermodynamic and kinetic stability[J]. Science, 2007, 315: 353
[129] Kearns K L, Still T, Fytas G, et al.High-modulus organic glasses prepared by physical vapor deposition[J]. Adv. Mater., 2010, 22: 39
[130] Kearns K L, Swallen S F, Ediger M D, et al.Hiking down the energy landscape: Progress toward the Kauzmann temperature via vapor deposition[J]. J. Phys. Chem., 2008, 112B: 4934
[131] Yu H B, Tylinski M, Guiseppi-Elie A, et al.Suppression of β relaxation in vapor-deposited ultrastable glasses[J]. Phys. Rev. Lett., 2015, 115: 185501
[132] Yu H B, Luo Y, Samwer K.Ultrastable metallic glass[J]. Adv. Mater., 2013, 25: 5904
[133] Aji D P B, Hirata A, Zhu F, et al. Ultrastrong and ultrastable metallic glass [J]. arXiv:1306.1575v1, 2013
[134] Guo Y L, Morozov A, Schneider D, et al.Ultrastable nanostructured polymer glasses[J]. Nat. Mater., 2012, 11: 337
[135] Singh S, Ediger M D, de Pablo J J. Ultrastable glasses from in silico vapour deposition[J]. Nat. Mater., 2013, 12: 139
[136] Chu J P, Jang J S C, Huang J C, et al. Thin film metallic glasses: Unique properties and potential applications[J]. Thin Solid Films, 2012, 520: 5097
[137] Luo P, Cao C R, Zhu F, et al.Ultrastable metallic glasses formed on cold substrates[J]. Nat. Commun., 2018, 9: 1389
[138] Chen L, Cao C R, Shi J A, et al.Fast surface dynamics of metallic glass enable superlatticelike nanostructure growth[J]. Phys. Rev. Lett., 2017, 118: 016101
[1] 董虎林,包海萍,彭建洪. TiC含量对铁基复合材料力学性能及耐磨性能的影响[J]. 金属学报, 2019, 55(8): 1049-1057.
[2] 史俊勤,孙琨,方亮,许少锋. 含水条件下单晶Cu的应力松弛及弹性恢复[J]. 金属学报, 2019, 55(8): 1034-1040.
[3] 李玲,姚生莲,赵晓丽,杨佳佳,王野熹,王鲁宁. 阳极氧化法制备Zr-17Nb合金表面氧化物纳米管阵列及其性能研究[J]. 金属学报, 2019, 55(8): 1008-1018.
[4] 陈兴品,李文佳,任平,曹文全,刘庆. C含量对Fe-Mn-Al-C低密度钢组织和性能的影响[J]. 金属学报, 2019, 55(8): 951-957.
[5] 张清东,李硕,张勃洋,谢璐,李瑞. 金属轧制复合过程微观变形行为的分子动力学建模及研究[J]. 金属学报, 2019, 55(7): 919-927.
[6] 刘巧沐,黄顺洲,刘芳,杨艳,南宏强,张东,孙文儒. B含量对K417G合金凝固过程中组织演变和力学性能的影响[J]. 金属学报, 2019, 55(6): 720-728.
[7] 张婷,赵宇宏,陈利文,梁建权,李沐奚,侯华. 触变注射成形法制备石墨烯纳米片增强镁基复合材料[J]. 金属学报, 2019, 55(5): 638-646.
[8] 吕钊钊,祖宇飞,沙建军,鲜玉强,张伟,崔鼎,严从林. 含Cu界面层碳纤维增强铝基复合材料制备工艺及其力学性能研究[J]. 金属学报, 2019, 55(3): 317-324.
[9] 涂爱东, 滕春禹, 王皞, 徐东生, 傅耘, 任占勇, 杨锐. Ti-Al合金γ/α2界面结构及拉伸变形行为的分子动力学模拟[J]. 金属学报, 2019, 55(2): 291-298.
[10] 王瑾, 余黎明, 李冲, 黄远, 李会军, 刘永长. 不同温度对含与不含位错α-Fe中He原子行为的影响[J]. 金属学报, 2019, 55(2): 274-280.
[11] 吴玉程. 面向等离子体W材料改善韧性的方法与机制[J]. 金属学报, 2019, 55(2): 171-180.
[12] 赵乃勤, 刘兴海, 蒲博闻. 多维度碳纳米相增强铝基复合材料研究进展[J]. 金属学报, 2019, 55(1): 1-15.
[13] 张海峰, 闫海乐, 贾楠, 金剑锋, 赵骧. Cu/Ti纳米层状复合体塑性变形机制的分子动力学模拟研究[J]. 金属学报, 2018, 54(9): 1333-1342.
[14] 郭祥如, 孙朝阳, 王春晖, 钱凌云, 刘凤仙. 基于三维离散位错动力学的fcc结构单晶压缩应变率效应研究[J]. 金属学报, 2018, 54(9): 1322-1332.
[15] 闵小华, 向力, 李明佳, 姚凯, 江村聪, 程从前, 土谷浩一. {332}<113>孪晶与等温ω相的组合对不同O含量Ti-15Mo合金力学性能的影响[J]. 金属学报, 2018, 54(9): 1262-1272.