Please wait a minute...
金属学报  2018, Vol. 54 Issue (11): 1479-1489    DOI: 10.11900/0412.1961.2018.00247
  组织与结构 本期目录 | 过刊浏览 |
金属玻璃中隐藏在长时间尺度下的动力学行为及其对性能的影响
汪卫华1,2(), 罗鹏1,2()
1 中国科学院物理研究所极端条件物理重点实验室 北京 1001902
2 中国科学院大学 北京 100049
The Dynamic Behavior Hidden in the Long Time Scale of Metallic Glasses and Its Effect on the Properties
Weihua WANG1,2(), Peng LUO1,2()
1 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
全文: PDF(2652 KB)   HTML
摘要: 

金属玻璃微观结构无序,没有类似晶体材料中的缺陷,表现出一系列优异的力学和功能特性,具有广泛的应用前景。由于非晶结构上长程无序,难以建立结构和性能的关系。而弛豫动力学研究为认识金属玻璃提供了非常重要的窗口,对于理解其稳定性和形变行为极为关键,也一直是凝聚态物理和材料科学领域的核心问题。近年来,随着更多先进研究手段的使用和研究的不断深入,人们发现在玻璃态极长的时间跨度和不同空间尺度下蕴含着丰富的动力学行为,这些动力学模式之间彼此关联,同时也具有独特性。本文介绍了近期关于金属玻璃弛豫动力学研究的重要进展,及其对于认识和调控材料性能、优化材料制备等方面的影响。

关键词 金属玻璃弛豫动力学力学性能超稳定玻璃    
Abstract

Metallic glasses (MGs) have disordered microstructure and no defects like in crystalline materials and possess a suite of outstanding mechanical and functional properties, showing thus promising potential for wide applications. Due to the lack of long range structural order, it is fraught with difficulties to construct the structure-property relationship in amorphous materials. The study of relaxation dynamics provides a very important approach to understand MGs, and is vital to understand their stability and deformation behavior and remains a core issue in the field of condensed matter physics and materials science. In recent years, with the use of more advanced research methods and the deepening of research, it was found that there exists rich dynamics covered by the extremely wide time scale and the different length scales of glassy state. Different dynamic modes not only correlate with each other but also show distinction. This article reviews recent progress in the study of relaxation dynamics in MGs, and its role in understanding and modifying material properties and optimizing material preparation.

Key wordsmetallic glass    relaxation    dynamics    mechanical property    ultrastable glass
收稿日期: 2018-06-08      出版日期: 2018-07-19
ZTFLH:  TG139  
基金资助:国家自然科学基项目Nos.11790291、51571209和51461165101,国家重点基础研究发展计划项目No.2015CB856800,国家重点研发计划项目Nos.2016YFB0300501和2017YFB0903902,前沿科学关键研究项目No.QYZDY-SSW-JSC017,中科院战略重点研究项目No.XDPB0601
作者简介: 作者简介 汪卫华,男,1963年生,研究员,博士

引用本文:

汪卫华, 罗鹏. 金属玻璃中隐藏在长时间尺度下的动力学行为及其对性能的影响[J]. 金属学报, 2018, 54(11): 1479-1489.
Weihua WANG, Peng LUO. The Dynamic Behavior Hidden in the Long Time Scale of Metallic Glasses and Its Effect on the Properties. Acta Metall, 2018, 54(11): 1479-1489.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2018.00247      或      http://www.ams.org.cn/CN/Y2018/V54/I11/1479

图1  Y60Ni20Al20金属玻璃的损耗模量(E")-温度(T)图谱[87]
图2  单步和两步退火条件下金属玻璃Boson峰强度和热力学能态表现出一致的演化行为[106]
图3  通过XPCS实验测量的Mg65Cu25Y10金属玻璃在不同温度下的关联函数和弛豫指数[109]
图4  4种金属玻璃在不同温度下的流变规律[120]
图5  Zr44Ti11Cu10Ni10Be25金属玻璃在不同温度下的应力弛豫曲线[121]
图6  金属玻璃及其高温前驱液体的动力学行为的Arrhenius图[121]
图7  不同气相沉积速率以及传统液体冷却制备的金属玻璃的Tg对比(插图为晶化温度Tx的对比)[137]
图8  表面弛豫与α和β弛豫的比较[137]
[1] Morey G W. The Properties of Glass [M]. 2nd Ed., New York:Reinhold, 1954, Vol.124
[2] Klement W, Willens R H, Duwez P.Non-crystalline structure in solidified gold-silicon alloys[J]. Nature, 1960, 187: 869
doi: 10.1038/187869b0
[3] Chen H S.Thermodynamic considerations on the formation and stability of metallic glasses[J]. Acta Metall., 1974, 22: 1505
doi: 10.1016/0001-6160(74)90112-6
[4] Kui H W, Greer A L, Turnbull D.Formation of bulk metallic glass by fluxing[J]. Appl. Phys. Lett., 1984, 45: 615
doi: 10.1063/1.95330
[5] Drehman A J, Greer A L, Turnbull D.Bulk formation of a metallic glass: Pd40Ni40P20[J]. Appl. Phys. Lett., 1982, 41: 716
doi: 10.1063/1.93645
[6] Inoue A.Stabilization of metallic supercooled liquid and bulk amorphous alloys[J]. Acta Mater., 2000, 48: 279
doi: 10.1016/S1359-6454(99)00300-6
[7] Inoue A, Zhang T, Masumoto T.Al-La-Ni amorphous alloys with a wide supercooled liquid region[J]. Mater. Trans. JIM, 1989, 30: 965
doi: 10.2320/matertrans1989.30.965
[8] Inoue A, Nakamura T, Nishiyama N, et al.Mg-Cu-Y bulk amorphous alloys with high tensile strength produced by a high-pressure die casting method[J]. Mater. Trans. JIM, 1992, 33: 937
doi: 10.2320/matertrans1989.33.937
[9] Inoue A, Zhang T, Nishiyama N, et al.Preparation of 16 mm diameter rod of amorphous Zr65Al7.5Ni10Cu17.5 alloy[J]. Mater. Trans. JIM, 1993, 34: 1234
doi: 10.2320/matertrans1989.34.1234
[10] Inoue A.High strength bulk amorphous alloys with low critical cooling rates (overview)[J]. Mater. Trans. JIM, 1995, 36: 866
doi: 10.2320/matertrans1989.36.866
[11] Perker A, Johnson W L.A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5[J]. Appl. Phys. Lett., 1993, 63: 2342
doi: 10.1063/1.110520
[12] Wang W H, Dong C, Shek C H.Bulk metallic glasses[J]. Mater. Sci. Eng., 2004, R44: 45
[13] Johnson W L.Bulk glass-forming metallic alloys: Science and technology[J]. MRS Bull., 1999, 24: 42
doi: 10.1557/S0883769400069980
[14] Wang W H.Roles of minor additions in formation and properties of bulk metallic glasses[J]. Prog. Mater. Sci., 2007, 52: 540
doi: 10.1016/j.pmatsci.2006.07.003
[15] Na J H, Demetriou M D, Floyd M, et al.Compositional landscape for glass formation in metal alloys[J]. Proc. Natl. Acad. Sci. USA, 2014, 111: 9031
doi: 10.1073/pnas.1407780111 pmid: 24927600
[16] Greer A L, Ma E.Bulk metallic glasses: At the cutting edge of metals research[J]. MRS Bull., 2007, 32: 611
doi: 10.1557/mrs2007.121
[17] Li Y L, Zhao S F, Liu Y H, et al.How many bulk metallic glasses are there?[J]. ACS Comb. Sci., 2017, 19: 687
doi: 10.1021/acscombsci.7b00048 pmid: 28902986
[18] Ding S Y, Liu Y H, Li Y L, et al.Combinatorial development of bulk metallic glasses[J]. Nat. Mater., 2014, 13: 494
doi: 10.1038/nmat3939 pmid: 24728462
[19] Gossett E M, Scanley E B, Liu Y H, et al.Computational nanocharacterization for combinatorially developed bulk metallic glass[J]. Int. J. High Speed Electron. Syst., 2015, 24: 1520012
doi: 10.1142/S0129156415200128
[20] Liu J B, Liu Y H, Gong P, et al.Combinatorial exploration of color in gold-based alloys[J]. Gold Bull., 2015, 48: 111
doi: 10.1007/s13404-015-0167-z
[21] Li J Y, Stein H S, Sliozberg K, et al.Combinatorial screening of Pd-based quaternary electrocatalysts for oxygen reduction reaction in alkaline media[J]. J. Mater. Chem., 2017, 5A: 67
[22] Inoue A, Shen B L, Koshiba H, et al.Cobalt-based bulk glassy alloy with ultrahigh strength and soft magnetic properties[J]. Nat. Mater., 2003, 2: 661
doi: 10.1038/nmat982 pmid: 14502274
[23] Chang C T, Shen B L, Inoue A.FeNi-based bulk glassy alloys with superhigh mechanical strength and excellent soft-magnetic properties[J]. Appl. Phys. Lett., 2006, 89: 051912
doi: 10.1063/1.2266702
[24] Liu Y H, Wang G, Pan M X, et al.Deformation behaviors and mechanism of Ni-Co-Nb-Ta bulk metallic glasses with high strength and plasticity[J]. J. Mater. Res., 2007, 22: 869
doi: 10.1557/jmr.2007.0104
[25] Ma H, Xu J, Ma E.Mg-based bulk metallic glass composites with plasticity and high strength[J]. Appl. Phys. Lett., 2003, 83: 2793
doi: 10.1063/1.1616192
[26] Demetriou M D, Launey M E, Garrett G, et al.A damage-tolerant glass[J]. Nat. Mater., 2011, 10: 123
doi: 10.1038/nmat2930
[27] Wang W H.The elastic properties, elastic models and elastic perspectives of metallic glasses[J]. Prog. Mater. Sci., 2012, 57: 487
doi: 10.1016/j.pmatsci.2011.07.001
[28] Tian L, Cheng Y Q, Shan Z W, et al.Approaching the ideal elastic limit of metallic glasses[J]. Nat. Commun., 2012, 3: 609
doi: 10.1038/ncomms1619 pmid: 22215084
[29] Conner R D, Dandilker R B, Struggs V, et al.Dynamic deformation behavior of tungsten-fiber/metallic-glass matrix composites[J]. Int. J. Impact Eng., 2000, 24: 435
doi: 10.1016/S0734-743X(99)00176-1
[30] Grimberg A, Baur H, Bochsler P, et al.Solar wind neon from genesis: Implications for the lunar noble gas record[J]. Science, 2006, 314: 1133
doi: 10.1126/science.1133568 pmid: 17110575
[31] Wang W H.Bulk metallic glasses with functional physical properties[J]. Adv. Mater., 2009, 21: 4524
doi: 10.1002/adma.v21:45
[32] Hasegawa R, Azuma D.Impacts of amorphous metal-based transformers on energy efficiency and environment[J]. J. Magn. Magn. Mater., 2008, 320: 2451
doi: 10.1016/j.jmmm.2008.04.052
[33] Gutfleisch O, Willard M A, Brück E, et al.Magnetic materials and devices for the 21st century: Stronger, lighter, and more energy efficient[J]. Adv. Mater., 2011, 23: 821
doi: 10.1002/chin.201116226 pmid: 21294168
[34] Herzer G.Modern soft magnets: Amorphous and nanocrystalline materials[J]. Acta Mater., 2013, 61: 718
doi: 10.1016/j.actamat.2012.10.040
[35] Nieh T G, Wadsworth J.Homogeneous deformation of bulk metallic glasses[J]. Scr. Mater., 2006, 54: 387
doi: 10.1016/j.scriptamat.2005.04.052
[36] Schroers J.The superplastic forming of bulk metallic glasses[J]. JOM, 2005, 57(5): 35
doi: 10.1007/s11837-005-0093-2
[37] Inoue A, Shen B L, Takeuchi A.Developments and applications of bulk glassy alloys in late transition metal base system[J]. Mater. Trans. JIM, 2006, 47: 1275
doi: 10.1063/1.2204458
[38] Chu J P, Wijaya H, Wu C W, et al.Nanoimprint of gratings on a bulk metallic glass[J]. Appl. Phys. Lett., 2007, 90: 034101
doi: 10.1063/1.2431710
[39] Tsai P H, Li T H, Hsu K T, et al.Effect of coating thickness on the cutting sharpness and durability of Zr-based metallic glass thin film coated surgical blades[J]. Thin Solid Films, 2016, 618: 36
doi: 10.1016/j.tsf.2016.05.020
[40] Chu J P, Yu C C, Tanatsugu Y, et al.Non-stick syringe needles: Beneficial effects of thin film metallic glass coating[J]. Sci. Rep., 2016, 6: 31847
doi: 10.1038/srep31847
[41] Hu Y C, Wang Y Z, Su R, et al.A highly efficient and self-stabilizing metallic-glass catalyst for electrochemical hydrogen generation[J]. Adv. Mater., 2016, 28: 10293
doi: 10.1002/adma.201603880 pmid: 27690333
[42] Doubek G, Sekol R C, Li J Y, et al.Guided evolution of bulk metallic glass nanostructures: A platform for designing 3D electrocatalytic surfaces[J]. Adv. Mater., 2016, 28: 1940
doi: 10.1002/adma.201504504 pmid: 26947938
[43] Greer A L, Cheng Y Q, Ma E.Shear bands in metallic glasses[J]. Mater. Sci. Eng., 2013, R74: 71
doi: 10.1016/j.mser.2013.04.001
[44] Schroers J, Johnson W L.Ductile bulk metallic glass[J]. Phys. Rev. Lett., 2004, 93: 255506
doi: 10.1103/PhysRevLett.93.255506
[45] Das J, Tang M B, Kim K B, et al."Work-hardenable" ductile bulk metallic glass[J]. Phys. Rev. Lett., 2005, 94: 205501
doi: 10.1103/PhysRevLett.94.205501
[46] Liu Y H, Wang G, Wang R J, et al.Super plastic bulk metallic glasses at room temperature[J]. Science, 2007, 315: 1385
doi: 10.1126/science.1136726
[47] Guo H, Yan P F, Wang Y B, et al.Tensile ductility and necking of metallic glass[J]. Nat. Mater., 2007, 6: 735
doi: 10.1038/nmat1984 pmid: 17704779
[48] Jang D, Greer J R.Transition from a strong-yet-brittle to a stronger-and-ductile state by size reduction of metallic glasses[J]. Nat. Mater., 2010, 9: 215
doi: 10.1038/nmat2622
[49] Wang Z T, Pan J, Li Y, et al.Densification and strain hardening of a metallic glass under tension at room temperature[J]. Phys. Rev. Lett., 2013, 111: 135504
doi: 10.1103/PhysRevLett.111.135504 pmid: 24116793
[50] Gao M, Dong J, Huan Y, et al.Macroscopic tensile plasticity by scalarizating stress distribution in bulk metallic glass[J]. Sci. Rep., 2016, 6: 21929
doi: 10.1038/srep21929 pmid: 4763289
[51] Qu R T, Zhang Q S, Zhang Z F.Achieving macroscopic tensile plasticity of monolithic bulk metallic glass by surface treatment[J]. Scr. Mater., 2013, 68: 845
doi: 10.1016/j.scriptamat.2013.02.005
[52] Sarac B, Schroers J.Designing tensile ductility in metallic glasses[J]. Nat. Commun., 2013, 4: 2158
doi: 10.1038/ncomms3158 pmid: 23863967
[53] Qu R T, Zhao J X, Stoica M, et al.Macroscopic tensile plasticity of bulk metallic glass through designed artificial defects[J]. Mater. Sci. Eng., 2012, A534: 365
doi: 10.1016/j.msea.2011.11.082
[54] Hofmann D C, Suh J Y, Wiest A, et al.Designing metallic glass matrix composites with high toughness and tensile ductility[J]. Nature, 2008, 451: 1085
doi: 10.1038/nature06598 pmid: 18305540
[55] Pauly S, Gorantla S, Wang G, et al.Transformation-mediated ductility in CuZr-based bulk metallic glasses[J]. Nat. Mater., 2010, 9: 473
doi: 10.1038/nmat2767 pmid: 20473286
[56] Hofmann D C, Suh J Y, Wiest A, et al.Development of tough, low-density titanium-based bulk metallic glass matrix composites with tensile ductility[J]. Proc. Natl. Acad. Sci. USA, 2008, 105: 20136
doi: 10.1073/pnas.0809000106
[57] Wu Y, Xiao Y H, Chen G L, et al.Bulk metallic glass composites with transformation-mediated work-hardening and ductility[J]. Adv. Mater., 2010, 22: 2770
doi: 10.1002/adma.201000482 pmid: 20422654
[58] Wu Y, Zhou D Q, Song W L, et al.Ductilizing bulk metallic glass composite by tailoring stacking fault energy[J]. Phys. Rev. Lett., 2012, 109: 245506
doi: 10.1103/PhysRevLett.109.245506 pmid: 23368346
[59] Wu Y, Wang H, Wu H H, et al.Formation of Cu-Zr-Al bulk metallic glass composites with improved tensile properties[J]. Acta Mater., 2011, 59: 2928
doi: 10.1016/j.actamat.2011.01.029
[60] Ichitsubo T, Matsubara E, Yamamoto T, et al.Microstructure of fragile metallic glasses inferred from ultrasound-accelerated crystallization in Pd-based metallic glasses[J]. Phys. Rev. Lett., 2005, 95: 245501
doi: 10.1103/PhysRevLett.95.245501 pmid: 16384392
[61] Ye J C, Lu J, Liu C T, et al.Atomistic free-volume zones and inelastic deformation of metallic glasses[J]. Nat. Mater., 2010, 9: 619
doi: 10.1038/nmat2802 pmid: 20651805
[62] Dmowski W, Iwashita T, Chuang C P, et al.Elastic heterogeneity in metallic glasses[J]. Phys. Rev. Lett., 2010, 105: 205502
doi: 10.1103/PhysRevLett.105.205502 pmid: 21231246
[63] Liu Y H, Wang D, Nakajima K, et al.Characterization of nanoscale mechanical heterogeneity in a metallic glass by dynamic force microscopy[J]. Phys. Rev. Lett., 2011, 106: 125504
doi: 10.1103/PhysRevLett.106.125504 pmid: 21517325
[64] Wagner H, Bedorf D, Küchemann S, et al.Local elastic properties of a metallic glass[J]. Nat. Mater., 2011, 10: 439
doi: 10.1038/nmat3024 pmid: 21602807
[65] Zhu F, Nguyen H K, Song S X, et al.Intrinsic correlation between β-relaxation and spatial heterogeneity in a metallic glass[J]. Nat. Commun., 2016, 7: 11516
doi: 10.1038/ncomms11516 pmid: 27158084
[66] Zhu F, Hirata A, Liu P, et al.Correlation between local structure order and spatial heterogeneity in a metallic glass[J]. Phys. Rev. Lett., 2017, 119: 215501
doi: 10.1103/PhysRevLett.119.215501 pmid: 29219421
[67] Wang Z, Wen P, Huo L S, et al.Signature of viscous flow units in apparent elastic regime of metallic glasses[J]. Appl. Phys. Lett., 2012, 101: 121906
doi: 10.1063/1.4753813
[68] Lewandowsli J J, Greer A L.Temperature rise at shear bands in metallic glasses[J]. Nat. Mater., 2006, 5: 15
doi: 10.1038/nmat1536
[69] Guan P F, Fujita T, Hirata A, et al.Structural origins of the excellent glass forming ability of Pd40Ni40P20[J]. Phys. Rev. Lett., 2012, 108: 175501
doi: 10.1103/PhysRevLett.108.175501
[70] Debenedetti P G, Stillinger F H.Supercooled liquids and the glass transition[J]. Nature, 2001, 410: 259
[71] Bengtzelius U, Götze W, Sjölander A.Dynamics of supercooled liquids and the glass transition[J]. J. Phys., 1984, 17C: 5915
[72] Götze W, Sjögren L.Relaxation processes in supercooled liquids[J]. Rep. Prog. Phys., 1992, 55: 241
doi: 10.1088/0034-4885/55/3/001
[73] Bartsch A, Rätzke K, Meyer A, et al.Dynamic arrest in multicomponent glass-forming alloys[J]. Phys. Rev. Lett., 2010, 104: 195901
doi: 10.1103/PhysRevLett.104.195901 pmid: 20866980
[74] Cicerone M T, Ediger M D.Enhanced translation of probe molecules in supercooled oterphenyl: Signature of spatially heterogeneous dynamics?[J]. J. Chem. Phys., 1996, 104: 7210
doi: 10.1063/1.471433
[75] Ediger M D.Spatially heterogeneous dynamics in supercooled liquids[J]. Annu. Rev. Phys. Chem., 2000, 51: 99
doi: 10.1146/annurev.physchem.51.1.99
[76] Fujara F, Geil B, Sillescu H H, et al.Translational and rotational diffusion in supercooled orthoterphenyl close to the glass transition[J]. Z. Phys., 1992, 88B: 195
doi: 10.1007/BF01323572
[77] Ediger M D, Angell C A, Nagel S R.Supercooled liquids and glasses[J]. J. Phys. Chem., 1996, 100: 13200
doi: 10.1021/jp953538d
[78] Biroli G, Bouchaud J-P.Critical fluctuations and breakdown of the Stokes-Einstein relation in the mode-coupling theory of glasses[J]. J. Phys.: Condens. Matter, 2007, 19: 205101
doi: 10.1088/0953-8984/19/20/205101
[79] Harmon J S, Demetriou M D, Johnson W L.Aneleastic to plastic transition in metallic glass-forming liquids[J]. Phys. Rev. Lett., 2007, 99: 135502
doi: 10.1103/PhysRevLett.99.135502 pmid: 17930608
[80] Yu H B, Wang W H, Bai H Y, et al.Relating activation of shear transformation zones to beta relaxations in metallic glasses[J]. Phys. Rev., 2010, 81B: 220201
[81] Lu Z, Jiao W, Wang W H, et al.Flow unit perspective on room temperature homogeneous plastic deformation in metallic glasses[J]. Phys. Rev. Lett., 2014, 113: 045501
doi: 10.1103/PhysRevLett.113.045501 pmid: 25105632
[82] Yu H B, Shen X, Wang Z, et al.Tensile plasticity in metallic glasses with pronounced b relaxations[J]. Phys. Rev. Lett., 2012, 108: 015504
doi: 10.1103/PhysRevLett.108.015504
[83] Wang Z, Sun B A, Bai H Y, et al.Evolution of hidden localized flow during glass-to-liquid transition in metallic glass[J]. Nat. Commun., 2014, 5: 5823
doi: 10.1038/ncomms6823 pmid: 25504332
[84] Zhu Z G, Li Y Z, Wang Z, et al.Compositional origin of unusual β-relaxation properties in La-Ni-Al metallic glasses[J]. J. Chem. Phys., 2014, 141: 084506
doi: 10.1063/1.4893954
[85] Wang Z, Yu H B, Wen P, et al.Pronounced slow β-relaxation in La-based bulk metallic glasses[J]. J. Phys.: Condens. Matter, 2011, 23: 142202
doi: 10.1088/0953-8984/23/14/142202 pmid: 21422505
[86] Yu H B, Wang W H, Bai H Y, et al.The β-relaxation in metallic glasses[J]. Natl. Sci. Rev., 2014, 1: 429
doi: 10.1093/nsr/nwu018
[87] Luo P, Lu Z, Zhu Z G, et al.Prominent β-relaxations in yttrium based metallic glasses[J]. Appl. Phys. Lett., 2015, 106: 031907
doi: 10.1063/1.4906452
[88] Wang Q, Zhang S T, Yang Y, et al.Unusual fast secondary relaxation in metallic glass[J]. Nat. Commun., 2015, 6: 7876
doi: 10.1038/ncomms8876 pmid: 4525198
[89] Zhao L Z, Xue R J, Zhu Z G, et al.A fast dynamic mode in rare earth based glasses[J]. J. Chem. Phys., 2016, 144: 204507
doi: 10.1063/1.4952421 pmid: 27250316
[90] Wang Q, Liu J J, Ye Y F, et al.Universal secondary relaxation and unusual brittle-to-ductile transition in metallic glasses[J]. Mater. Today, 2017, 20: 293
doi: 10.1016/j.mattod.2017.05.007
[91] Küchemann S, Maaß R.Gamma relaxation in bulk metallic glasses[J]. Scr. Mater., 2017, 137: 5
doi: 10.1016/j.scriptamat.2017.04.034
[92] Jiang H Y, Luo P, Wen P, et al.The near constant loss dynamic mode in metallic glass[J]. J. Appl. Phys., 2016, 120: 145106
doi: 10.1063/1.4964809
[93] Grigera T S, Martín-Mayor V, Parisi G, et al.Phonon interpretation of the 'boson peak' in supercooled liquids[J]. Nature, 2003, 422: 289
doi: 10.1038/nature01475 pmid: 12646916
[94] Shintani H, Tanaka H.Universal link between the boson peak and transverse phonons in glass[J]. Nat. Mater., 2008, 7: 870
doi: 10.1038/nmat2293 pmid: 18849975
[95] Schober H R.Quasi-localized vibrations and phonon damping in glasses[J]. J. Non-Cryst. Solids, 2011, 357: 501
doi: 10.1016/j.jnoncrysol.2010.07.036
[96] Laird B B, Schober H R.Localized low-frequency vibrational modes in a simple model glass[J]. Phys. Rev. Lett., 1991, 66: 636
doi: 10.1142/S0217984991000903 pmid: 10043860
[97] Mitrofanov Y P, Peterlechner M, Divinski S V, et al.Impact of plastic deformation and shear band formation on the boson heat capacity peak of a bulk metallic glass[J]. Phys. Rev. Lett., 2014, 112: 135901
doi: 10.1103/PhysRevLett.112.135901 pmid: 24745440
[98] Bünz J, Brink T, Tsuchiya K, et al.Low temperature heat capacity of a severely deformed metallic glass[J]. Phys. Rev. Lett., 2014, 112: 135501
doi: 10.1103/PhysRevLett.112.135501 pmid: 24745435
[99] Huang B, Zhu Z G, Ge T P, et al.Hand in hand evolution of boson heat capacity anomaly and slow b-relaxation in La-based metallic glasses[J]. Acta Mater., 2016, 110: 73
doi: 10.1016/j.actamat.2016.03.016
[100] Angell C A.Formation of glasses from liquids and biopolymers[J]. Science, 1995, 267: 1924
doi: 10.1126/science.267.5206.1924 pmid: 17770101
[101] Sokolov A P, Rossler E, Kisliuk A, et al.Dynamics of strong and fragile glass formers: Differences and correlation with low-temperature properties[J]. Phys. Rev. Lett., 1993, 71: 2062
doi: 10.1103/PhysRevLett.71.2062 pmid: 10054573
[102] Sokolov A P, Calemczuk R, Salce B, et al.Low-temperature anomalies in strong and fragile glass formers[J]. Phys. Rev. Lett., 1997, 78: 2405
doi: 10.1103/PhysRevLett.78.2405
[103] Li Y, Bai H Y, Wang W H, et al.Low-temperature specific-heat anomalies associated with the boson peak in CuZr-based bulk metallic glasses[J]. Phys. Rev., 2006, 74B: 052201
doi: 10.1103/PHYSREVB.74.052201
[104] Li Y, Yu P, Bai H Y.Study on the boson peak in bulk metallic glasses[J]. J. Appl. Phys., 2008, 104: 013520
doi: 10.1063/1.2948926
[105] Yannopoulos S N, Papatheodorou G N.Critical experimental facts pertaining to models and associated universalities for low-frequency Raman scattering in inorganic glass formers[J]. Phys. Rev., 2000, 62B: 3728
doi: 10.1103/PhysRevB.62.3728
[106] Luo P, Li Y Z, Bai H Y, et al.Memory effect manifested by a boson peak in metallic glass[J]. Phys. Rev. Lett., 2016, 116: 175901
doi: 10.1103/PhysRevLett.116.175901 pmid: 27176528
[107] Ketov S V, Sun Y H, Nachum S, et al.Rejuvenation of metallic glasses by non-affine thermal strain[J]. Nature, 2015, 524: 200
doi: 10.1038/nature14674 pmid: 26268190
[108] Li M X, Luo P, Sun Y T, et al.Significantly enhanced memory effect in metallic glass by multistep training[J]. Phys. Rev., 2017, 96B: 174204
doi: 10.1103/PhysRevB.96.174204
[109] Ruta B, Chushkin Y, Monaco G, et al.Atomic-scale relaxation dynamics and aging in a metallic glass probed by X-ray photon correlation spectroscopy[J]. Phys. Rev. Lett., 2012, 109: 165701
doi: 10.1103/PhysRevLett.109.165701 pmid: 23215091
[110] Grubel G, Zontone F.Correlation spectroscopy with coherent X-rays[J]. J. Alloys Compd., 2004, 362: 3
doi: 10.1016/S0925-8388(03)00555-3
[111] Li Y Z, Zhao L Z, Wang C, et al.Communication: Non-monotonic evolution of dynamical heterogeneity in unfreezing process of metallic glasses[J]. J. Chem. Phys., 2015, 143: 041104
doi: 10.1063/1.4927701
[112] Giordano V M, Ruta B.Unveiling the structural arrangements responsible for the atomic dynamics in metallic glasses during physical aging[J]. Nat. Commun., 2016, 7: 10344
doi: 10.1038/ncomms10344 pmid: 26787443
[113] Evenson Z, Ruta B, Hechler S, et al.X-ray photon correlation spectroscopy reveals intermittent aging dynamics in a metallic glass[J]. Phys. Rev. Lett., 2015, 115: 175701
doi: 10.1103/PhysRevLett.115.175701 pmid: 26551125
[114] Zanotto E D.Do cathedral glasses flow?[J]. Am. J. Phys., 1998, 66: 392
doi: 10.1119/1.19026
[115] Zanotto E D, Gupta P K.Do cathedral glasses flow?—Additional remarks[J]. Am. J. Phys., 1999, 67: 260
doi: 10.1119/1.19236
[116] Welch R C, Smith J R, Potuzak M, et al.Dynamics of glass relaxation at room temperature[J]. Phys. Rev. Lett., 2013, 110: 265901
doi: 10.1103/PhysRevLett.110.265901 pmid: 23848901
[117] Phillips J C.Stretched exponential relaxation in molecular and electronic glasses[J]. Rep. Prog. Phys., 1996, 59: 1133
doi: 10.1088/0034-4885/59/9/003
[118] Ruta B, Baldi G, Chushkin Y, et al.Revealing the fast atomic motion of network glasses[J]. Nat. Commun., 2014, 5: 3939
doi: 10.1038/ncomms4939 pmid: 24835825
[119] Cangialosi D, Boucher V M, Alegría A, et al.Direct evidence of two equilibration mechanisms in glassy polymers[J]. Phys. Rev. Lett., 2013, 111: 095701
doi: 10.1103/PhysRevLett.111.095701 pmid: 24033048
[120] Luo P, Lu Z, Li Y Z, et al.Probing the evolution of slow flow dynamics in metallic glasses[J]. Phys. Rev., 2016, 93B: 104204
doi: 10.1103/PhysRevB.93.104204
[121] Luo P, Wen P, Bai H Y, et al.Relaxation decoupling in metallic glasses at low temperatures[J]. Phys. Rev. Lett., 2017, 118: 225901
doi: 10.1103/PhysRevLett.118.225901
[122] Luo P, Li M X, Jiang H Y, et al.Temperature dependent evolution of dynamic heterogeneity in metallic glass[J]. J. Appl. Phys., 2017, 121: 135104
doi: 10.1063/1.4976740
[123] Fakhraai Z, Forrest J A.Measuring the surface dynamics of glassy polymers[J]. Science, 2008, 319: 600
doi: 10.1126/science.1151205 pmid: 18239120
[124] Chai Y, Salez T, McGraw J D, et al. A direct quantitative measure of surface mobility in a glassy polymer[J]. Science, 2014, 343: 994
doi: 10.1126/science.1244845 pmid: 24578574
[125] Zhu L, Brian C W, Swallen S F, et al.Surface self-diffusion of an organic glass[J]. Phys. Rev. Lett., 2011, 106: 256103
doi: 10.1103/PhysRevLett.106.256103 pmid: 21770657
[126] Cao C R, Lu Y M, Bai H Y, et al.High surface mobility and fast surface enhanced crystallization of metallic glass[J]. Appl. Phys. Lett., 2015, 107: 141606
doi: 10.1063/1.4933036
[127] Yang Z H, Fujii Y, Lee F K, et al.Glass transition dynamics and surface layer mobility in unentangled polystyrene films[J]. Science, 2010, 328: 1676
doi: 10.1126/science.1184394
[128] Swallen S F, Kearns K L, Mapes M K, et al.Organic glasses with exceptional thermodynamic and kinetic stability[J]. Science, 2007, 315: 353
doi: 10.1126/science.1135795 pmid: 17158289
[129] Kearns K L, Still T, Fytas G, et al.High-modulus organic glasses prepared by physical vapor deposition[J]. Adv. Mater., 2010, 22: 39
doi: 10.1002/adma.200901673 pmid: 20217693
[130] Kearns K L, Swallen S F, Ediger M D, et al.Hiking down the energy landscape: Progress toward the Kauzmann temperature via vapor deposition[J]. J. Phys. Chem., 2008, 112B: 4934
doi: 10.1021/jp7113384 pmid: 18386872
[131] Yu H B, Tylinski M, Guiseppi-Elie A, et al.Suppression of β relaxation in vapor-deposited ultrastable glasses[J]. Phys. Rev. Lett., 2015, 115: 185501
doi: 10.1103/PhysRevLett.115.185501
[132] Yu H B, Luo Y, Samwer K.Ultrastable metallic glass[J]. Adv. Mater., 2013, 25: 5904
doi: 10.1002/adma.201302700
[133] Aji D P B, Hirata A, Zhu F, et al. Ultrastrong and ultrastable metallic glass [J]. arXiv:1306.1575v1, 2013
[134] Guo Y L, Morozov A, Schneider D, et al.Ultrastable nanostructured polymer glasses[J]. Nat. Mater., 2012, 11: 337
doi: 10.1038/nmat3234 pmid: 22306770
[135] Singh S, Ediger M D, de Pablo J J. Ultrastable glasses from in silico vapour deposition[J]. Nat. Mater., 2013, 12: 139
doi: 10.1038/NMAT3521 pmid: 23291708
[136] Chu J P, Jang J S C, Huang J C, et al. Thin film metallic glasses: Unique properties and potential applications[J]. Thin Solid Films, 2012, 520: 5097
doi: 10.1016/j.tsf.2012.03.092
[137] Luo P, Cao C R, Zhu F, et al.Ultrastable metallic glasses formed on cold substrates[J]. Nat. Commun., 2018, 9: 1389
doi: 10.1038/s41467-018-03656-4 pmid: 29643346
[138] Chen L, Cao C R, Shi J A, et al.Fast surface dynamics of metallic glass enable superlatticelike nanostructure growth[J]. Phys. Rev. Lett., 2017, 118: 016101
doi: 10.1103/PhysRevLett.118.016101
[1] 闵小华, 向力, 李明佳, 姚凯, 江村聪, 程从前, 土谷浩一. {332}<113>孪晶与等温ω相的组合对不同O含量Ti-15Mo合金力学性能的影响[J]. 金属学报, 2018, 54(9): 1262-1272.
[2] 郭祥如, 孙朝阳, 王春晖, 钱凌云, 刘凤仙. 基于三维离散位错动力学的fcc结构单晶压缩应变率效应研究[J]. 金属学报, 2018, 54(9): 1322-1332.
[3] 张海峰, 闫海乐, 贾楠, 金剑锋, 赵骧. Cu/Ti纳米层状复合体塑性变形机制的分子动力学模拟研究[J]. 金属学报, 2018, 54(9): 1333-1342.
[4] 王帅鹏, 罗文华, 李赣, 李海波, 张广丰. La含量对Ce-La合金氢化动力学的影响[J]. 金属学报, 2018, 54(8): 1187-1192.
[5] 杨祖坤, 张昌盛, 庞蓓蓓, 洪艳艳, 莫方杰, 刘昭, 孙光爱. 初始微结构对多晶金属Be宏观力学性能的影响[J]. 金属学报, 2018, 54(8): 1150-1156.
[6] 徐士新, 余伟, 李舒笳, 王坤, 孙齐松. 预变形温度对纳米贝氏体相变动力学及组织的影响[J]. 金属学报, 2018, 54(8): 1113-1121.
[7] 张可, 孙新军, 张明亚, 李昭东, 叶晓瑜, 朱正海, 黄贞益, 雍岐龙. Ti-V-Mo复合微合金钢中(Ti, V, Mo)C在γ /α中沉淀析出的动力学[J]. 金属学报, 2018, 54(8): 1122-1130.
[8] 高飘, 魏恺文, 喻寒琛, 杨晶晶, 王泽敏, 曾晓雁. 分层厚度对选区激光熔化成形Ti-5Al-2.5Sn合金组织与性能的影响规律[J]. 金属学报, 2018, 54(7): 999-1009.
[9] 赵鹏越, 郭永博, 白清顺, 张飞虎. 基于微观结构的多晶Cu纳米压痕表面缺陷研究[J]. 金属学报, 2018, 54(7): 1051-1058.
[10] 白银, 刘正东, 谢建新, 包汉生, 陈正宗. 预氧化处理对G115钢高温蒸气氧化行为的影响[J]. 金属学报, 2018, 54(6): 895-904.
[11] 樊丹丹, 许军锋, 钟亚男, 坚增运. 过热温度和冷却速率对过冷Ti熔体凝固过程的影响[J]. 金属学报, 2018, 54(6): 844-850.
[12] 时惠英, 杨超, 蒋百灵, 黄蓓, 王迪. 双脉冲磁控溅射峰值靶电流密度对TiN薄膜结构与力学性能的影响[J]. 金属学报, 2018, 54(6): 927-934.
[13] 张涛, 严玮, 谢卓明, 苗澍, 杨俊峰, 王先平, 方前锋, 刘长松. 碳化物/氧化物弥散强化钨基材料研究进展[J]. 金属学报, 2018, 54(6): 831-843.
[14] 康慧君, 李金玲, 王同敏, 郭景杰. 定向凝固Al-Mn-Be合金初生金属间化合物相生长行为及力学性能[J]. 金属学报, 2018, 54(5): 809-823.
[15] 刘林, 孙德建, 黄太文, 张琰斌, 李亚峰, 张军, 傅恒志. 高梯度定向凝固技术及其在高温合金制备中的应用[J]. 金属学报, 2018, 54(5): 615-626.