Please wait a minute...
金属学报  2018, Vol. 54 Issue (12): 1777-1784    DOI: 10.11900/0412.1961.2018.00129
  本期目录 | 过刊浏览 |
Mn含量对Fe-Mn-C孪生诱发塑性钢拉伸变形行为的影响
李冬冬1,2, 钱立和1,2(), 刘帅1,2, 孟江英1, 张福成1,2
1 燕山大学亚稳材料制备技术与科学国家重点实验室 秦皇岛 066004
2 燕山大学国家冷轧板带装备及工艺工程技术研究中心 秦皇岛 066004
Effect of Manganese Content on Tensile Deformation Behavior of Fe-Mn-C TWIP Steels
Dongdong LI1,2, Lihe QIAN1,2(), Shuai LIU1,2, Jiangying MENG1, Fucheng ZHANG1,2
1 State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
2 National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, Yanshan University, Qinhuangdao 066004, China
全文: PDF(6127 KB)   HTML
摘要: 

利用室温单向拉伸实验,结合OM、TEM、SEM-EBSD等观察手段,对比研究了2种Mn含量(13Mn和22Mn,质量分数,%) Fe-Mn-C系高锰奥氏体孪生诱发塑性(TWIP)钢的拉伸性能、孪生演化规律及应变硬化行为。结果表明,随Mn含量的增加,钢的屈服强度与抗拉强度降低而断裂延伸率增加。在低应变时,Mn含量的增加延缓了钢中形变孪晶的形成;但在高应变时,Mn含量的增加加快了孪晶的形成速率,进而使高锰钢中的孪晶体积分数反而比低锰钢中的高。同时,形变孪晶的厚度随Mn含量的增加而增加。最后,对2种Mn含量的Fe-Mn-C系TWIP钢的孪生及拉伸变形行为进行了讨论。

关键词 高锰钢孪生诱发塑性钢形变孪晶拉伸性能应变硬化动态应变时效    
Abstract

Twinning-induced plasticity (TWIP) steels exhibit excellent mechanical properties including high tensile strength and good plasticity owing to their high strain-hardening rate. The high strain-hardening rate results mainly from deformation twinning; in addition, plane slip and dynamic strain ageing also have some contribution to strain-hardening rate. Until now, the influences of some alloy elements such as C, Al and Si on tensile properties of Fe-Mn-C based TWIP steels have received much attention. However, the effect of Mn content on the microstructure and tensile properties of twinning-dominated Fe-Mn-C TWIP steels is still not clear. In this work, the microstructure, tensile properties and strain hardening behavior of two Fe-Mn-C TWIP steels (Fe-13Mn-1.0C and Fe-22Mn-1.0C, mass fraction, %) were studied by using OM, TEM, SEM-EBSD and monotonic tensile tests. The results show that the yield and tensile strengths of the steel decrease while the elongation to fracture increases with the increase of Mn content. At low tensile strains, the increase of Mn content delays the formation of deformation twins. However, at higher strain level, the deformation twinning rate becomes higher and hence more deformation twins are produced in the steel with higher Mn content than that in the steel with lower Mn content. Furthermore, the thickness of deformation twins increases with increasing the Mn content. The twinning and tensile deformation behavior in the two steels are also discussed.

Key wordshigh manganese steel    TWIP steel    deformation twin    tensile property    strain hardening    dynamic strain ageing
收稿日期: 2018-04-08      出版日期: 2018-07-04
ZTFLH:  TG142.1  
基金资助:国家自然科学基金项目No.51171166
作者简介:

作者简介 李冬冬,女,1994年生,博士生

引用本文:

李冬冬, 钱立和, 刘帅, 孟江英, 张福成. Mn含量对Fe-Mn-C孪生诱发塑性钢拉伸变形行为的影响[J]. 金属学报, 2018, 54(12): 1777-1784.
Dongdong LI, Lihe QIAN, Shuai LIU, Jiangying MENG, Fucheng ZHANG. Effect of Manganese Content on Tensile Deformation Behavior of Fe-Mn-C TWIP Steels. Acta Metall, 2018, 54(12): 1777-1784.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2018.00129      或      http://www.ams.org.cn/CN/Y2018/V54/I12/1777

图1  Fe-13Mn-1.0C和Fe-22Mn-1.0C钢固溶处理后的OM像
Steel Mass fraction / % SFE
C Mn Al Si S P Fe mJm-2
Fe-13Mn-1.0C 0.99 12.95 <0.011 <0.001 0.007 <0.001 Bal. 27
Fe-22Mn-1.0C 0.97 21.97 <0.001 <0.001 0.018 <0.001 Bal. 37
表1  2种TWIP钢的化学成分及根据文献[3]计算的层错能
图2  Fe-13Mn-1.0C和Fe-22Mn-1.0C钢的工程应力-应变及应变硬化率曲线
图3  2种钢在拉伸应变为0.6时纵截面EBSD反极图
图4  2种钢拉伸至不同应变及断裂时纵截面组织的SEM像
图5  2种钢孪晶面积分数随拉伸应变的变化趋势
图6  2种钢拉断后的TEM像
图7  2种钢拉断后的孪晶厚度及孪晶间距统计结果
[1] Frommeyer G, Brüx U, Neumann P.Supra-ductile and high-strength manganese-TRIP/TWIP steels for high energy absorption purposes[J]. ISIJ Int., 2003, 43: 438
doi: 10.2355/isijinternational.43.438
[2] Barbier D, Gey N, Allain S, et al.Analysis of the tensile behavior of a TWIP steel based on the texture and microstructure evolutions[J]. Mater. Sci. Eng., 2009, A500: 196
doi: 10.1016/j.msea.2008.09.031
[3] Ghasri-Khouzani M, McDermid J R. Effect of carbon content on the mechanical properties and microstructural evolution of Fe-22Mn-C steels[J]. Mater. Sci. Eng., 2015, A621: 118
doi: 10.1016/j.msea.2014.10.042
[4] Bouaziz O, Allain S, Scott C.Effect of grain and twin boundaries on the hardening mechanisms of twinning-induced plasticity steels[J]. Scr. Mater., 2008, 58: 484
doi: 10.1016/j.scriptamat.2007.10.050
[5] Vercammen S, Blanpain B, De Cooman B C, et al. Cold rolling behavior of an austenitic Fe-30Mn-3Al-3Si TWIP steel: The importance of deformation twinning[J]. Acta Mater., 2004, 52: 2005
doi: 10.1016/j.actamat.2003.12.040
[6] Kim J K, De Cooman B C. Stacking fault energy and deformation mechanisms in Fe-xMn-0.6C-yAl TWIP steel[J]. Mater. Sci. Eng., 2016, A676: 216
doi: 10.1016/j.msea.2016.08.106
[7] Liu F, Dan W J, Zhang W G.Strain hardening model of TWIP steels with manganese content[J]. Mater. Sci. Eng., 2016, A674: 178
doi: 10.1016/j.msea.2016.07.115
[8] Jin J E, Lee Y K.Effects of Al on microstructure and tensile properties of C-bearing high Mn TWIP steel[J]. Acta Mater., 2012, 60: 1680
doi: 10.1016/j.actamat.2011.12.004
[9] Liu S, Qian L H, Meng J Y, et al.On the more persistently-enhanced strain hardening in carbon-increased Fe-Mn-C twinning-induced plasticity steel[J]. Mater. Sci. Eng., 2015, A639: 425
[10] Liu S, Qian L H, Meng J Y, et al.Simultaneously increasing both strength and ductility of Fe-Mn-C twinning-induced plasticity steel via Cr/Mo alloying[J]. Scr. Mater., 2017, 127: 10
doi: 10.1016/j.scriptamat.2016.08.034
[11] Chen X J.High Manganese Steel [M]. Beijing: China Machine Press, 1989: 377(陈希杰. 高锰钢[M]. 北京: 机械工业出版社, 1989: 377)
[12] Bouaziz O, Allain S, Scott C P, et al.High manganese austenitic twinning induced plasticity steels: A review of the microstructure properties relationships[J]. Curr. Opin. Solid State Mater. Sci., 2011, 15: 141
doi: 10.1016/j.cossms.2011.04.002
[13] Ding S X, Chang C P, Tu J F, et al.Microstructure and tensile behavior of 15-24 wt-% Mn TWIP steels[J]. Mater. Sci. Technol., 2013, 29: 1048
doi: 10.1179/1743284713Y.0000000251
[14] Wang Y C, Lan P, Li Y, et al.Effect of alloying elements on mechanical behavior of Fe-Mn-C TWIP steel[J]. J. Mater. Eng., 2015, 43(9): 30(王玉昌, 兰鹏, 李杨等. 合金元素对Fe-Mn-C系TWIP钢力学行为的影响[J]. 材料工程, 2015, 43(9): 30)
doi: 10.11868/j.issn.1001-4381.2015.09.006
[15] Bouaziz O, Zurob H, Chehab B, et al.Effect of chemical composition on work hardening of Fe-Mn-C TWIP steels[J]. Mater. Sci. Technol., 2011, 27: 707
doi: 10.1179/026708309X12535382371852
[16] Dastur Y N, Leslie W C.Mechanism of work hardening in Hadfield manganese steel[J]. Metall. Trans., 1981, 12A: 749
doi: 10.1007/BF02648339
[17] Qian L H, Guo P C, Zhang F C, et al.Abnormal room temperature serrated flow and strain rate dependence of critical strain of a Fe-Mn-C twin-induced plasticity steel[J]. Mater. Sci. Eng., 2013, A561: 266
doi: 10.1016/j.msea.2012.10.087
[18] Qian L H, Guo P C, Meng J Y, et al.Unusual grain-size and strain-rate effects on the serrated flow in FeMnC twin-induced plasticity steels[J]. J. Mater. Sci., 2013, 48: 1669
doi: 10.1007/s10853-012-6925-x
[19] Yoo J D, Park K T.Microband-induced plasticity in a high Mn-Al-C light steel[J]. Mater. Sci. Eng., 2008, A496: 417
[20] Chen L, Kim H S, Kim S K, et al.Localized deformation due to portevin-LeChatelier effect in 18Mn-0.6C TWIP austenitic steel[J]. ISIJ Int., 2007, 47: 1804
doi: 10.2355/isijinternational.47.1804
[21] Saeed-Akbari A, Mosecker L, Schwedt A, et al.Characterization and prediction of flow behavior in high-manganese twinning induced plasticity steels: Part I. Mechanism maps and work-hardening behavior[J]. Metall. Mater. Trans., 2012, 43A: 1688
doi: 10.1007/s11661-011-0993-4
[22] Jeong K, Jin J E, Jung Y S, et al.The effects of Si on the mechanical twinning and strain hardening of Fe-18Mn-0.6C twinning-induced plasticity steel[J]. Acta Mater., 2013, 61: 3399
doi: 10.1016/j.actamat.2013.02.031
[23] Jung l C, Cho L, De Cooman B C. In situ observation of the influence of Al on deformation-induced twinning in TWIP steel[J]. ISIJ Int., 2015, 55: 870
doi: 10.2355/isijinternational.55.870
[24] Pierce D T, Jiménez J A, Bentley J, et al.The influence of stacking fault energy on the microstructural and strain-hardening evolution of Fe-Mn-Al-Si steels during tensile deformation[J]. Acta Mater., 2015, 100: 178
doi: 10.1016/j.actamat.2015.08.030
[25] Zhu R F, Lv Y P, Li S T, et al.Valence electron structure of high manganese steel and its intrinsic property[J]. Chin. Sci. Bull., 1996, 41: 1336(朱瑞富, 吕宇鹏, 李士同等. 高锰钢的价电子结构及其本质特性[J]. 科学通报, 1996, 41: 1336)
doi: 10.1360/csb1996-41-14-1336
[26] Zhang Y, Tao N R, Lu K.Effect of stacking-fault energy on deformation twin thickness in Cu-Al alloys[J]. Scr. Mater., 2009, 60: 211
doi: 10.1016/j.scriptamat.2008.10.005
[27] Wang S H, Liu Z Y, Wang G D.Influence of grain size on TWIP effect in a TWIP steel[J]. Acta Metall. Sin., 2009, 45: 1083(王书晗, 刘振宇, 王国栋. TWIP钢中晶粒尺寸对TWIP效应的影响[J]. 金属学报, 2009, 45: 1083)
[1] 陈胜虎, 戎利建. Ni-Fe-Cr合金固溶处理后的组织变化及其对性能的影响[J]. 金属学报, 2018, 54(3): 385-392.
[2] 朱恺, 伍翠兰, 谢盼, 韩梅, 刘元瑞, 张香阁, 陈江华. 奥氏体/铁素体层状条带结构高锰钢的微观组织及其性能[J]. 金属学报, 2018, 54(10): 1387-1398.
[3] 陈瑞, 许庆彦, 郭会廷, 夏志远, 吴勤芳, 柳百成. Al-7Si-Mg铝合金拉伸过程应变硬化行为及力学性能模拟研究[J]. 金属学报, 2017, 53(9): 1110-1124.
[4] 席明哲, 吕超, 吴贞号, 尚俊英, 周玮, 董荣梅, 高士友. 连续点式锻压激光快速成形TC11钛合金的组织和力学性能[J]. 金属学报, 2017, 53(9): 1065-1074.
[5] 杨金侠,徐福涛,周动林,孙元,侯星宇,崔传勇. 重熔工艺对K452合金高温拉伸性能的影响[J]. 金属学报, 2017, 53(6): 703-708.
[6] 席明哲,周玮,尚俊英,吕超,吴贞号,高士友. 热处理对连续点式锻压激光快速成形GH4169合金组织与拉伸性能的影响[J]. 金属学报, 2017, 53(2): 239-247.
[7] 王丽娜,杨平,毛卫民. 高锰TRIP钢高速拉伸时的马氏体转变行为分析*[J]. 金属学报, 2016, 52(9): 1045-1052.
[8] 张玉妥,李丛,王培,李殿中. 9Ni钢拉伸性能的同步辐射高能X射线原位研究*[J]. 金属学报, 2016, 52(4): 403-409.
[9] 杨蕊,潘艳,陈威,孙巧艳,肖林,孙军. 微尺度Ti-10V-2Fe-3Al单晶压缩变形行为及其微观机制*[J]. 金属学报, 2016, 52(2): 135-142.
[10] 张显峰,李国爱,陆政,于娟,郝敏. 淬火后预拉伸对自然时效状态Al-Li合金组织和性能的影响*[J]. 金属学报, 2016, 52(12): 1497-1502.
[11] 单智伟, 刘博宇. Mg的{101̅2}形变孪晶机制*[J]. 金属学报, 2016, 52(10): 1267-1278.
[12] 张旭, 王玉敏, 杨青, 雷家峰, 杨锐. SiCf/TC17复合材料拉伸行为研究[J]. 金属学报, 2015, 51(9): 1025-1037.
[13] 杨亮,高叔博,王艳丽,叶腾,宋霖,林均品. Si对高Nb-TiAl合金组织及室温拉伸性能的影响*[J]. 金属学报, 2015, 51(7): 859-865.
[14] 郝宪朝,张龙,熊超,马颖澈,刘奎. 760 ℃长期时效对一种Ni-Cr-W-Fe合金组织和力学性能的影响*[J]. 金属学报, 2015, 51(7): 807-814.
[15] 崔跃,席文君,王星,李树杰. 纳米Al2O3和NiAl共同强化的铁基ODS合金的铝热合成研究[J]. 金属学报, 2015, 51(7): 791-798.