Please wait a minute...
金属学报  2019, Vol. 55 Issue (2): 249-257    DOI: 10.11900/0412.1961.2018.00083
  本期目录 | 过刊浏览 |
磁屏蔽对电磁出钢系统中感应加热电源功率损耗的影响
何明1,2, 李显亮1,3, 王情伟1,2, 王连钰1,2, 王强1()
1 东北大学材料电磁过程研究教育部重点实验室 沈阳 110819
2 东北大学冶金学院 沈阳 110819
3 东北大学材料科学与工程学院 沈阳 110819
Influence of Magnetic Shielding on the Power Loss of Induction Heating Power Supply in the Electro-magnetic Induction Controlled Automated Steel Teeming System
Ming HE1,2, Xianliang LI1,3, Qingwei WANG1,2, Lianyu WANG1,2, Qiang WANG1()
1 Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education),Northeastern University, Shenyang 110819, China
2 School of Metallurgy, Northeastern University, Shenyang 110819, China
3 School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
引用本文:

何明, 李显亮, 王情伟, 王连钰, 王强. 磁屏蔽对电磁出钢系统中感应加热电源功率损耗的影响[J]. 金属学报, 2019, 55(2): 249-257.
Ming HE, Xianliang LI, Qingwei WANG, Lianyu WANG, Qiang WANG. Influence of Magnetic Shielding on the Power Loss of Induction Heating Power Supply in the Electro-magnetic Induction Controlled Automated Steel Teeming System[J]. Acta Metall Sin, 2019, 55(2): 249-257.

全文: PDF(2298 KB)   HTML
摘要: 

为降低钢包结构对电磁出钢系统中电源功率损耗的影响,提出了在线圈下侧与四周布置磁屏蔽材料的方法。采用数值模拟的方法分析了磁屏蔽对感应线圈周围磁感应强度和线圈最佳加热位置的影响,并通过实验进行了验证。确定了适用于电磁出钢技术的最佳的磁屏蔽尺寸和结构。结果表明,采用磁屏蔽的方法能够有效降低线圈的功率损耗,并提高线圈的最佳加热区域。当使用Cu作为磁屏蔽材料时,其最佳尺寸为高度200 mm、长度和宽度290 mm及厚度1 mm,并且网状结构在不影响水口座砖寿命的同时能够达到与传统结构基本相同的磁屏蔽效果。此时线圈的最佳加热位置会上移20.2 mm,这有利于电磁出钢系统中感应线圈的安装及其使用寿命的提高。

关键词 电磁出钢系统磁屏蔽磁感应强度最佳加热位置感应加热    
Abstract

In order to reduce the influence of ladle structure on the power loss of power supply in the electromagnetic induction controlled automated steel teeming (EICAST) system, a method of setting magnetic shielding material on the bottom and sides of induction coil is firstly proposed. The influence of the magnetic shielding on the magnetic flux density and the optimal heating position of induction coil are analyzed by numerical simulation, and the correctness of simulation results is verified by laboratory experiments. In addition, the best magnetic shielding sizes and structure for this new technology are determined respectively. The results show that the magnetic shielding method can effectively reduce the power loss of induction coil and improve the optimum heating area of induction coil. When using copper as a magnetic shielding material, the best sizes of magnetic shielding are height of 200 mm, length of 290 mm, width of 290 mm and thickness of 1 mm. At this time, the best heating position of induction coil will move upward, and the moving distance is 20.2 mm, which is beneficial to the installation of induction coil and the improvement of its service life. To improve the strength of nozzle brick and ensure the service life of nozzle brick, a new structure is applied, and its magnetic shielding effect is almost the same as the former. These research works are very important for the wide application of the EICAST technology.

Key wordselectromagnetic induction controlled automated steel teeming (EICAST) system    magnetic shielding    magnetic flux density    optimum heating position    induction heating
收稿日期: 2018-03-12     
ZTFLH:  TF777  
基金资助:资助项目 国家自然科学基金委员会-宝钢集团有限公司钢铁联合研究基金项目No.U1560207
作者简介:

作者简介 何 明,男,1990年生,博士生

图1  磁屏蔽效果计算的数值模型
Parameter Value Unit
Ampere-turns of induction coil 2160, 3600 AN
Height of induction coil 170 mm
Inner diameter of induction coil 235 mm
Length and width of bottom magnetic shielding material 550, 350 mm
Thickness of bottom magnetic shielding material 2 mm
Height of four sides magnetic shielding material 0, 50, 100, 150, 200, 250, 300 mm
Length of four sides magnetic shielding material 290, 310, 330, 350 mm
Width of four sides magnetic shielding material 290, 310, 330, 350 mm
Thickness of four sides magnetic shielding material 0.5, 1, 2, 3 mm
Relative permittivity of copper 1 -
Relative permeability of copper 0.999991 -
Bulk conductivity of copper 58000000 S/m
Relative permittivity of steel 1 -
Relative permeability of steel 4000 -
Bulk conductivity of steel 10300000 S/m
表1  计算过程中主要的模型参数与电磁参数
图2  磁屏蔽测试实验装置
图3  无磁屏蔽作用时水口中心线上不同位置磁感应强度的数值模拟结果与实验结果对比
图4  有无底部磁屏蔽材料时平面A的磁感应强度分布
图5  有无底部磁屏蔽材料时线圈中心线上的磁感应强度分布
图6  有无四周磁屏蔽材料时平面A与平面B的磁感应强度分布
图7  不同磁屏蔽材料高度时平面A的磁感应强度分布
图8  不同磁屏蔽材料高度时线圈中心线上的磁感应强度变化
图9  不同磁屏蔽材料宽度或长度时线圈中心线上的磁感应强度变化
图10  不同磁屏蔽材料厚度时线圈中心线上磁感应强度变化
图11  有无底部和四周磁屏蔽材料时线圈中心线上的磁感应强度分布
图12  不同磁屏蔽结构时平面A的磁感应强度分布
图13  不同磁屏蔽结构时线圈中心线上磁感应强度的变化曲线
[1] Tavakoli M H, Karbaschi H, Samavat F.Influence of workpiece height on the induction heating process[J]. Math. Comput. Modell., 2011, 54: 50
[2] Lucía O, Maussion P, Dede E J, et al.Induction heating technology and its applications: Past developments, current technology, and future challenges[J]. IEEE Trans. Ind. Electron., 2014, 61: 2509
[3] Chaboudez C, Clain S, Glardon R, et al.Numerical modeling in induction heating for axisymmetric geometries[J]. IEEE Trans. Magn., 1997, 33: 739
[4] Kawase Y, Miyatake T, Hirata K.Thermal analysis of steel blade quenching by induction heating[J]. IEEE Trans. Magn., 2000, 36: 1788
[5] Chen Q S, Gao P, Hu W R.Effects of induction heating on temperature distribution and growth rate in large-size SiC growth system[J]. J. Cryst. Growth, 2004, 266: 320
[6] Khodamoradi H, Tavakoli M H, Mohammadi K.Influence of crucible and coil geometry on the induction heating process in Czochralski crystal growth system[J]. J. Cryst. Growth, 2015, 421: 66
[7] Wang Q, Li B K, Tsukihashi F.Modeling of a thermo-electromagneto-hydrodynamic problem in continuous casting tundish with channel type induction heating[J]. ISIJ Int., 2014, 54: 311
[8] Xing F, Zheng S G, Zhu M Y.Motion and removal of inclusions in new induction heating tundish[J]. Steel Res. Int., 2018, 89: 1700542
[9] Gao A, Li D J, Wang Q, et al.Analysis of an automatic steel-teeming method using electromagnetic induction heating in slide gate system[J]. ISIJ Int., 2009, 50: 1770
[10] He M, Li X L, Cao Z Q, et al.Effect of heat treatment on the microstructure and properties of Cu-0.6Cr-0.2Zr alloy induction coil in electromagnetic steel-teeming system[J]. Vacuum, 2017, 146: 130
[11] Wang Q, Li D J, Liu X A, et al.Effects of steel teeming in new slide gate system with electromagnetic induction[J]. J. Iron Steel Res. Int., 2015, 22: 30
[12] Liu X A, Wang Q, Shi C Y, et al.Power supply design in electromagnetic induction controlled automatic steel-teeming system and its effects on system reliability[J]. J. Central South Univ.(Sci. Technol.), 2015, 46: 3188(刘兴安, 王强, 史纯阳等. 电磁出钢系统中感应加热电源设计及其对系统可靠性的影响[J]. 中南大学学报(自然科学版), 2015, 46: 3188)
[13] Wang K, He M, Wang Q, et al.Study status and development trend of new electromagnetic metallurgical technologies[J]. Angang Technol., 2015, (4): 1(王凯, 何明, 王强等. 电磁冶金新技术的研究现状与发展趋势[J]. 鞍钢技术, 2015, (4): 1)
[14] Liu X A, Wang Q, Li D J, et al.Coil design in electromagnetic induction-controlled automated steel-teeming system and its effects on system reliability[J]. ISIJ Int., 2014, 54: 482
[15] Wang Q, He M, Zhu X W, et al.Study and development on numerical simulation for application of electromagnetic field technology in metallurgical processes[J]. Acta Metall. Sin., 2018, 54: 228(王强, 何明, 朱晓伟等. 电磁场技术在冶金领域应用的数值模拟研究进展[J]. 金属学报, 2018, 54: 228)
[16] Li D J, Wang Q, Liu X A, et al.A new steel teeming technology by using electromagnetic induction heating system in ladle[J]. J. Iron Steel Res. Int., 2012, 19(suppl. 1): 766
[17] Li D J, Liu X A, Wang Q, et al.Analysis of temperature distribution in nozzle pocket brick of electromagnetic steel-tapping device[J]. J. Northeastern Univ.(Nat. Sci.), 2012, 33: 661(李德军, 刘兴安, 王强等. 电磁出钢装置中座砖内温度分布的分析[J]. 东北大学学报(自然科学版), 2012, 33: 661)
[18] Liu X A, Wang Q, Liu T, et al.Analysis of working temperature of cot used in electromagnetic induction controlled automatic steel-teeming system[J]. J. Northeastern Univ.(Nat. Sci.), 2014, 35: 51(刘兴安, 王强, 刘铁等. 电磁出钢系统中感应加热线圈工况温度分析[J]. 东北大学学报(自然科学版), 2014, 35: 51)
[19] Gao A, Wang Q, Li D J, et al.Efficiency and influencing factors of electromagnetic steel-teeming technology[J]. Acta Metall. Sin., 2010, 46: 634(高翱, 王强, 李德军等. 电磁引流技术的出钢效率及其影响因素[J]. 金属学报, 2010, 46: 634)
[20] Gao A, Wang Q, Li D J, et al.State of Fe-C alloy in the electromagnetic steel-teeming system[J]. Acta Metall. Sin., 2011, 47: 219(高翱, 王强, 李德军等. 电磁出钢系统中Fe-C合金的状态研究[J]. 金属学报, 2011, 47: 219)
[21] He M, Wang Q, Liu X A, et al.Analysis of power supply heating effect during high temperature experiments based on the electromagnetic steel teeming technology[J]. High Temp. Mater. Proc., 2017, 36: 441
[22] Nian S C, Huang M S, Tsai T H.Enhancement of induction heating efficiency on injection mold surface using a novel magnetic shielding method[J]. Int. Commun. Heat Mass Transfer, 2014, 50: 52
[23] Crevecoeur G, Sergeant P, Dupre L, et al.Two-level response and parameter mapping optimization for magnetic shielding[J]. IEEE Trans. Magn., 2008, 44: 301
[24] Alfonzetti S, Dilettoso E, Rizzo S A, et al.Stochastic optimization of magnetic shields in induction heating applications by means of the FEM-DBCI method and the SALHE evolutionary algorithm[J]. IEEE Trans. Magn., 2009, 45: 1752
[25] Sergeant P, Hectors D, Dupre L, et al.Thermal analysis of magnetic shields for induction heating[J]. IET Electr. Power Appl., 2009, 3: 543
[26] Sergeant P, Dupre L, Melkebeek J.Active and passive magnetic shielding for stray field reduction of an induction heater with axial flux[J]. IEE Proc. Electr. Power Appl., 2005, 152: 1359
[27] Sergeant P, Hectors D, Dupre L, et al.Magnetic shielding of levitation melting devices[J]. IEEE Trans. Magn., 2010, 46: 686
[28] Wang Q, He J C, Liu T, et al.New Technologies of Electromagnetic Metallurgy [M]. Beijing: Science Press, 2015: 14(王强, 赫冀成, 刘铁等. 电磁冶金新技术 [M]. 北京: 科学出版社, 2015: 14)
[29] Gao Y G.Shielding and Grounding [M]. Beijing: Beijing University of Posts and Telecommunications Press, 2004: 9(高攸纲. 屏蔽与接地 [M]. 北京: 北京邮电大学出版社, 2004: 9)
[30] Sergeant P, Sabariego R V, Crevecoeur G, et al.Analysis of perforated magnetic shields for electric power applications[J]. IET Electr. Power Appl., 2009, 3: 123
[1] 高晗, 刘力, 周笑宇, 周心怡, 蔡汶君, 周泓伶. Ti6Al4V表面微纳结构的制备及生物活性[J]. 金属学报, 2023, 59(11): 1466-1474.
[2] 唐海燕, 刘锦文, 王凯民, 肖红, 李爱武, 张家泉. 连铸中间包加热技术及其冶金功能研究进展[J]. 金属学报, 2021, 57(10): 1229-1245.
[3] 肖宏,许朋朋,祁梓宸,吴宗河,赵云鹏. 感应加热异温轧制制备钢/铝复合板[J]. 金属学报, 2020, 56(2): 231-239.
[4] 唐海燕, 李小松, 张硕, 张家泉. 基于恒过热控制的感应加热中间包内钢水的流动与传热[J]. 金属学报, 2020, 56(12): 1629-1642.
[5] 姜雁斌, 刘新华, 王春阳, 莫永达, 谢建新. 感应加热连续退火对铜包铝复合线材再结晶组织和界面金属间化合物的影响[J]. 金属学报, 2014, 50(4): 479-488.
[6] 赵素玲 陈晶 王一龙. 填料形状对Fe@Ag核壳复合粒子的电磁特性的影响[J]. 金属学报, 2012, 48(8): 977-982.
[7] 高翱 王强 李德军 柴海山 赵立佳 赫冀成. 电磁出钢系统中Fe-C合金的状态研究[J]. 金属学报, 2011, 47(2): 219-223.
[8] 贾成厂; 郭志猛 . 增分熔融凝固加工工艺参数的探讨[J]. 金属学报, 1999, 35(2): 187-189 .
[9] 顾煜炯;姚健;周兆英;张丽文. 感应加热小半径金属弯管成型的机理研究[J]. 金属学报, 1994, 30(24): 543-548.
[10] 傅旭力;李军;王武;杨永清;舒光冀. 定向共晶Bi/MnBi磁性材料的组织与性能[J]. 金属学报, 1992, 28(6): 85-89.
[11] 陶曾毅;罗家明. 表面处理对球墨铸铁接触疲劳性能的影响[J]. 金属学报, 1989, 25(6): 43-48.