Please wait a minute...
金属学报  2018, Vol. 54 Issue (10): 1408-1416    DOI: 10.11900/0412.1961.2018.00069
  本期目录 | 过刊浏览 |
X80管线钢表面SRB生物膜特征及腐蚀行为
舒韵1,2, 闫茂成1(), 魏英华1, 刘福春1, 韩恩厚1, 柯伟1
1 中国科学院金属研究所 沈阳 110016
2 中国科学技术大学材料科学与工程学院 沈阳 110016
Characteristics of SRB Biofilm and Microbial Corrosionof X80 Pipeline Steel
Yun SHU1,2, Maocheng YAN1(), Yinghua WEI1, Fuchun LIU1, En-Hou HAN1, Wei KE1
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
引用本文:

舒韵, 闫茂成, 魏英华, 刘福春, 韩恩厚, 柯伟. X80管线钢表面SRB生物膜特征及腐蚀行为[J]. 金属学报, 2018, 54(10): 1408-1416.
Yun SHU, Maocheng YAN, Yinghua WEI, Fuchun LIU, En-Hou HAN, Wei KE. Characteristics of SRB Biofilm and Microbial Corrosionof X80 Pipeline Steel[J]. Acta Metall Sin, 2018, 54(10): 1408-1416.

全文: PDF(8175 KB)   HTML
摘要: 

采用SEM、Raman光谱、XPS等分析手段,结合扫描振动电极(SVET)、微区电化学测试和电化学阻抗谱(EIS)等电化学测量技术,研究含硫酸盐还原菌(SRB)的模拟海水中X80管线钢表面生物膜的形成、特征,生物膜与膜下金属的交互作用,以及管线钢腐蚀行为及电化学过程特征。结果表明:SRB微菌落及胞外聚合物(EPS)形成初期,EPS的屏障作用抑制X80钢的腐蚀过程;SRB生物膜形成后,X80钢的自然腐蚀电位降低约20 mV,SRB显著促进了管线钢的腐蚀过程;浸泡后期SRB及其生物膜使X80钢腐蚀速率较灭菌对照组高出约1个数量级。SRB生物膜与腐蚀产物Fe2+/Fe3+间存在络合、螯合作用,细胞及其代谢产物硫化物与金属间存在直接或间接电子交互作用,这些作用相互协同耦合,促使生物膜下局部腐蚀的发生和发展。

关键词 微生物腐蚀管线钢微区电化学技术生物膜硫酸盐还原菌    
Abstract

Microbiologically induced corrosion (MIC) is known as one of the most damaging failures for pipeline steels. Especially, sulfate-reducing bacteria (SRB) is the most widespread strains in soil and seawater environments and is the typical bacteria associated with MIC. SRB may cause severe localized attack, leading to pipeline failures in forms of pitting, crevice corrosion, dealloying and cracking. In this work, SEM, Raman spectroscopy, XPS, scanning vibrating electrode (SVET) technique, EIS and other electrochemical techniques were used to study the formation of SRB biofilm, its electrochemical interaction with X80 pipeline steel and corrosion behavior of the steel in a simulated seawater. The results showed that barrier effect of the extracellular polymer substances (EPS) inhibits corrosion process of X80 steel in the initial formation of EPS and SRB micro-colony. After the formation of SRB biofilm, open circuit potential (EOCP) of the steel decreases 20 mV, and SRB significantly promotes the corrosion process of the pipeline steel. In the later stage, due to SRB and its biofilm, the corrosion rate of X80 steel exposed in SRB inoculated environment is almost one order of magnitude higher than that in the sterile environment. The biofilm have complexation effect and chelation effect with corrosion products (Fe2+/Fe3+). SRB cells, metabolites and biofilms have direct and indirect electron interactions with the steel substrate. These various coupling effects promote occurrence and development of local corrosion on the surface of the steel beneath biofilm.

Key wordsmicrobiologically induced corrosion (MIC)    pipeline steel    microelectrochemical technique    biofilm    sulfate reducing bacteria (SRB)
收稿日期: 2018-02-14     
ZTFLH:  TG172.5  
基金资助:国家重点基础研究发展计划项目No.2014CB643304和中国科学院A类战略性先导科技专项项目No.XDA13040500
作者简介:

作者简介 舒 韵,女,1992年生,硕士生

图1  接菌海水中浸泡3、7和14 d后X80钢表面的SRB生物膜及截面SEM像
图2  接菌海水中X80钢上生物膜的SEM像及元素面分布图
图3  灭菌及接菌海水中浸泡后X80钢腐蚀产物的Raman光谱
Time / d +6 +4 +2 -1 -2
1 33.68 - - 66.32 -
7 - - 25.64 43.88 30.48
14 - 13.99 32.76 15.35 37.89
表1  接菌环境中浸泡1、7和14 d 的含硫化合物中S 的不同化合价态百分比
图4  接菌环境中浸泡1、7和14 d后样品表面腐蚀产物中S的XPS精细谱
图5  接菌海水中浸泡3、7和14 d 后SRB生物膜下X80钢的腐蚀形貌
图6  接菌海水中浸泡14 d后X80钢表面SRB生物膜划伤处的SVET电流分布图(电流密度(i)正值为阳极区,负值为阴极区)
图7  灭菌和接菌海水中X80钢开路电位随时间的变化
图8  灭菌海水和接菌海水中X80钢的Nyquist和Bode图
图9  灭菌和接菌海水中X80钢极化电阻(Rp)随时间的变化
图10  含SRB海水中管线钢表面生物膜形成及膜下MIC腐蚀过程示意图
[1] Hamilton W A.Sulphate-reducing bacteria and anaerobic corrosion[J]. Annu. Rev. Microbiol., 1985, 39: 195
[2] Usher K M, Kaksonen A H, Cole I, et al.Critical review: Microbially influenced corrosion of buried carbon steel pipes[J]. Int. Biodeterior. Biodegrad., 2014, 93: 84
[3] Kuang F, Wang J, Yan L, et al.Effects of sulfate-reducing bacteria on the corrosion behavior of carbon steel[J]. Electrochim. Acta, 2007, 52: 6084
[4] Wolfram J H, Rogers R D, Gazsó L G.Microbial Degradation Processes in Radioactive Waste Repository and in Nuclear Fuel Storage Areas[M]. Netherlands: Springer, 1997: 37
[5] Gaines R H.Bacterial activity as a corrosive influence in the soil[J]. Ind. Eng. Chem., 1910, 2: 128
[6] Li F S, An M Z, Liu G Z, et al.Effects of sulfidation of passive film in the presence of SRB on the pitting corrosion behaviors of stainless steels[J]. Mater. Chem. Phys., 2009, 113: 971
[7] Yu L, Duan J Z, Zhao W, et al.Characteristics of hydrogen evolution and oxidation catalyzed by Desulfovibrio caledoniensis biofilm on pyrolytic graphite electrode[J]. Electrochim. Acta, 2011, 56: 9041
[8] Chen S Q, Wang P, Zhang D.The influence of sulphate-reducing bacteria on heterogeneous electrochemical corrosion behavior of Q235 carbon steel in seawater[J]. Mater. Corros., 2016, 67: 340
[9] Xu F L, Duan J Z, Hou B R.Electron transfer process from marine biofilms to graphite electrodes in seawater[J]. Bioelectrochemistry, 2010, 78: 92
[10] Xu D K, Li Y C, Gu T Y.Mechanistic modeling of biocorrosion caused by biofilms of sulfate reducing bacteria and acid producing bacteria[J]. Bioelectrochemistry, 2016, 110: 52
[11] Zhang P Y, Xu D K, Li Y C, et al.Electron mediators accelerate the microbiologically influenced corrosion of 304 stainless steel by the Desulfovibrio vulgaris biofilm[J]. Bioelectrochemistry, 2015, 101: 14
[12] Von Wolzogen Kuhr C A H. Unity of anaerobic and aerobic iron corrosion process in the soil[J]. Corrosion, 1961, 17: 293t
[13] Starkey R L.Interrelations between microorganisms and plant roots in the rhizosphere[J]. Bacteriol. Rev., 1958, 22: 154
[14] King R A, Miller J D A. Corrosion by the sulphate-reducing bacteria[J]. Nature, 1971, 233: 491
[15] Iverson W P.Corrosion of iron and formation of iron phosphide by Desulfovibrio desulfuricans[J]. Nature, 1968, 217: 1265
[16] Pope D H, Morris E A.Some experiences with microbiologically-influenced corrosion of pipelines[J]. Mater. Performance, 1995, 34: 23
[17] Evans T E, Hart A C, Skedgell A N.The nature of the film on coloured stainless steel[J]. Trans. IMF, 1973, 51: 108
[18] Dinh H T, Kuever J, Mu?mann M, et al.Iron corrosion by novel anaerobic microorganisms[J]. Nature, 2004, 427: 829
[19] Yu L, Duan J Z, Du X Q, et al.Accelerated anaerobic corrosion of electroactive sulfate-reducing bacteria by electrochemical impedance spectroscopy and chronoamperometry[J]. Electrochem. Commun., 2013, 26: 101
[20] Xu D K, Gu T Y.Carbon source starvation triggered more aggressive corrosion against carbon steel by the Desulfovibrio vulgaris biofilm[J]. Int. Biodeterior. Biodegrad., 2014, 91: 74
[21] Xu D K, Li Y C, Song F M, et al.Laboratory investigation of microbiologically influenced corrosion of C1018 carbon steel by nitrate reducing bacterium Bacillus licheniformis[J]. Corros. Sci., 2013, 77: 385
[22] Li Y C, Xu D K, Chen C F, et al.Anaerobic microbiologically influenced corrosion mechanisms interpreted using bioenergetics and bioelectrochemistry: A review[J]. J. Mater. Sci. Technol., 2018, 34: 1713
[23] Jia R, Tan J L, Jin P, et al.Effects of biogenic H2S on the microbiologically influenced corrosion of C1018 carbon steel by sulfate reducing Desulfovibrio vulgaris biofilm[J]. Corros. Sci., 2018, 130: 1
[24] Yu L B, Yan M C, Ma J, et al.Sulfate reducing bacteria corrosion of pipeline steel in Fe-rich red soil[J]. Acta Metall. Sin., 2017, 53: 1568(于利宝, 闫茂成, 马健等. 富Fe红壤中管线钢的硫酸盐还原菌腐蚀行为[J]. 金属学报, 2017, 53: 1568)
[25] Lovley D R.Dissimilatory metal reduction[J]. Annu. Rev. Microbiol., 1993, 47: 263
[26] Féron D.Nuclear Corrosion Science and Engineering [M]. Cambridge: Woodhead Publishing, 2012: 231
[27] Sun C, Xu J, Wang F H, et al.Interaction of sulfate-reducing bacteria and carbon steel Q235 in biofilm[J]. Ind. Eng. Chem. Res., 2011, 50: 12797
[28] Liu H F, Liu L W, Xu L M, et al.Effects of biofilm on corrosion of carbon steel[J]. J. Chin. Soc. Corros. Pro., 1999, 19: 291(刘宏芳, 刘烈炜, 许立铭等. 生物膜对碳钢腐蚀的影响[J]. 中国腐蚀与防护学报, 1999, 19: 291)
[29] Chen L P.Biofilms and biofouling[J]. Corros. Prot., 1996, 17: 3(陈六平. 生物膜与生物污损[J]. 腐蚀与防护, 1996, 17: 3)
[30] Lee W, Characklis W G.Corrosion of mild steel under anaerobic biofilm[J]. Corrosion, 1993, 49: 186
[31] Yuan W S.Corrosion behavior under biofilm of metal material in the circulation cooling water system [D]. Beijing: Beijing Jiaotong University, 2008(苑维双. 循环冷却水中微生物膜下金属材料腐蚀行为研究 [D]. 北京: 北京交通大学, 2008)
[32] Awad A M, Ghazy E A, Abo El-Enin S A, et al. Electropolishing of AISI-304 stainless steel for protection against SRB biofilm[J]. Surf. Coat. Technol., 2012, 206: 3165
[33] Sherar B W A, Power I M, Keech P G, et al. Characterizing the effect of carbon steel exposure in sulfide containing solutions to microbially induced corrosion[J]. Corros. Sci., 2011, 53: 955
[34] Wu T Q, Yang P, Zhang M D, et al.Microbiologically induced corrosion of X80 pipeline steel in an acid soil solution: (II) Corrosion morphology and corrosion product analysis[J]. J. Chin. Soc. Corros. Prot., 2014, 34: 353(吴堂清, 杨圃, 张明德等. 酸性土壤浸出液中X80钢微生物腐蚀研究: (II)腐蚀形貌和产物分析[J]. 中国腐蚀与防护学报, 2014, 34: 353)
[35] AlAbbas F M, Williamson C, Bhola S M, et al. Influence of sulfate reducing bacterial biofilm on corrosion behavior of low-alloy, high-strength steel (API-5L X80)[J]. Int. Biodeterior. Biodegrad., 2013, 78: 34
[36] Yuan S J, Liang B, Zhao Y, et al.Surface chemistry and corrosion behaviour of 304 stainless steel in simulated seawater containing inorganic sulphide and sulphate-reducing bacteria[J]. Corros. Sci., 2013, 74: 353
[37] Siriwardane R V, Cook J M.Interactions of SO2 with sodium deposited on CaO[J]. J. Colloid Interf. Sci., 1986, 114: 525
[38] Abraham K M, Chaudhri S M.The lithium surface film in the Li/SO2 cell[J]. J. Electrochem. Soc., 1986, 133: 1307
[39] Peisert H, Chassé T, Streubel P, et al.Relaxation energies in XPS and XAES of solid sulfur-compounds[J]. J. Electron. Spectrosc. Relat. Phenom., 1994, 68: 321
[40] Wu T Q, Xu J, Yan M C, et al.Synergistic effect of sulfate-reducing bacteria and elastic stress on corrosion of X80 steel in soil solution[J]. Corros. Sci., 2014, 83: 38
[41] Yu X R, Liu F, Wang Z Y, et al.Auger parameters for sulfur-containing compounds using a mixed aluminum-silver excitation source[J]. J. Electron. Spectrosc. Relat. Phenom., 1990, 50: 159
[42] Jin J T, Wu G X, Zhang Z H, et al.Effect of extracellular polymeric substances on corrosion of cast iron in the reclaimed wastewater[J]. Bioresour. Technol., 2014, 165: 162
[43] Dong Z H, Liu T, Liu H F.Influence of EPS isolated from thermophilic sulphate-reducing bacteria on carbon steel corrosion[J]. Biofouling, 2011, 27: 487
[44] Huang Y, Liu S J, Jiang C Y.Microbiologically influenced corrosion and mechanisms[J]. Microbiol. China, 2017, 44: 1699(黄烨, 刘双江, 姜成英. 微生物腐蚀及腐蚀机理研究进展[J]. 微生物学通报, 2017, 44: 1699)
[45] Yan M C, Sun C, Xu J, et al.Electrochemical behavior of API X80 steel in acidic soils from Southeast China[J]. Int. J. Electrochem. Sci., 2015, 10: 1762
[46] Feliu V, González J A, Andrade C, et al.Equivalent circuit for modelling the steel-concrete interface. I. Experimental evidence and theoretical predictions[J]. Corros. Sci., 1998, 40: 975
[1] 李小涵, 曹公望, 郭明晓, 彭云超, 马凯军, 王振尧. 低碳钢Q235、管线钢L415和压力容器钢16MnNi在湛江高湿高辐照海洋工业大气环境下的初期腐蚀行为[J]. 金属学报, 2023, 59(7): 884-892.
[2] 张月鑫, 王举金, 杨文, 张立峰. 冷却速率对管线钢中非金属夹杂物成分演变的影响[J]. 金属学报, 2023, 59(12): 1603-1612.
[3] 李学达, 李春雨, 曹宁, 林学强, 孙建波. 高强管线钢焊接临界再热粗晶区中逆转奥氏体的逆相变晶体学[J]. 金属学报, 2021, 57(8): 967-976.
[4] 杨柯,史显波,严伟,曾云鹏,单以银,任毅. 新型含Cu管线钢——提高管线耐微生物腐蚀性能的新途径[J]. 金属学报, 2020, 56(4): 385-399.
[5] 陈芳,李亚东,杨剑,唐晓,李焰. X80钢焊接接头在模拟天然气凝析液中的腐蚀行为[J]. 金属学报, 2020, 56(2): 137-147.
[6] 李亚东,李强,唐晓,李焰. X80管线钢焊接接头的模拟重构及电偶腐蚀行为表征[J]. 金属学报, 2019, 55(6): 801-810.
[7] 张体明, 赵卫民, 蒋伟, 王永霖, 杨敏. X80钢焊接残余应力耦合接头组织不均匀下氢扩散的数值模拟[J]. 金属学报, 2019, 55(2): 258-266.
[8] 冯浩,李花兵,路鹏冲,杨纯田,姜周华,武晓雷. 铜绿假单胞菌对CrCoNi中熵合金微生物腐蚀行为的影响[J]. 金属学报, 2019, 55(11): 1457-1468.
[9] 马歌, 左秀荣, 洪良, 姬颖伦, 董俊媛, 王慧慧. 深海用X70管线钢焊接接头腐蚀行为研究[J]. 金属学报, 2018, 54(4): 527-536.
[10] 史显波, 严伟, 王威, 单以银, 杨柯. 新型含Cu管线钢的抗氢致开裂性能[J]. 金属学报, 2018, 54(10): 1343-1349.
[11] 董利明,杨莉,戴军,张宇,王学林,尚成嘉. Mn、Ni、Mo含量对K65热煨弯管焊缝组织转变和低温韧性的影响[J]. 金属学报, 2017, 53(6): 657-668.
[12] 万红霞,宋东东,刘智勇,杜翠薇,李晓刚. 交流电对X80钢在近中性环境中腐蚀行为的影响[J]. 金属学报, 2017, 53(5): 575-582.
[13] 史显波,徐大可,闫茂成,严伟,单以银,杨柯. 新型含Cu管线钢的微生物腐蚀行为研究[J]. 金属学报, 2017, 53(2): 153-162.
[14] 赵小宇, 黄峰, 甘丽君, 胡骞, 刘静. MS X70酸性环境用管线钢焊接接头氢致开裂敏感性及氢捕获效率研究[J]. 金属学报, 2017, 53(12): 1579-1587.
[15] 于利宝, 闫茂成, 马健, 吴明浩, 舒韵, 孙成, 许进, 于长坤, 卿永长. 富Fe红壤中管线钢的硫酸盐还原菌腐蚀行为[J]. 金属学报, 2017, 53(12): 1568-1578.