Please wait a minute...
金属学报  2018, Vol. 54 Issue (10): 1359-1367    DOI: 10.11900/0412.1961.2018.00023
  本期目录 | 过刊浏览 |
小尺度CA6NM马氏体不锈钢样品疲劳性能评价研究
马也飞1,2, 宋竹满2, 张思倩1, 陈立佳1, 张广平2()
1 沈阳工业大学材料科学与工程学院 沈阳 110870
2 中国科学院金属研究所 沈阳 110016
Evaluation of Fatigue Properties of CA6NM Martensite Stainless Steel Using Miniature Specimens
Yefei MA1,2, Zhuman SONG2, Siqian ZHANG1, Lijia CHEN1, Guangping ZHANG2()
1 School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
全文: PDF(6624 KB)   HTML
摘要: 

通过对核主泵叶轮用小尺度超薄CA6NM马氏体不锈钢样品的对称弯曲疲劳和单轴拉-拉疲劳实验,获得了小尺度样品的疲劳性能,并将其与标准块体CA6NM马氏体不锈钢样品的疲劳性能进行了对比研究,研究利用超薄样品评价CA6NM不锈钢疲劳可靠性的可行性。研究发现,40 μm厚的超薄CA6NM钢样品拉伸强度比块体样品略高,但拉伸塑性明显降低;单轴加载下的40 μm厚的超薄样品在低周区的疲劳强度低于标准块体样品获得的疲劳强度,随着应力幅的降低,在高周区两者的疲劳强度性能差异逐渐减小,疲劳极限较为接近。相同40 μm厚的超薄样品的对称弯曲疲劳加载获得的疲劳强度远高于单轴拉-拉疲劳加载获得的疲劳强度,且高于块体样品的疲劳强度。小尺度超薄样品的疲劳性能与加载方式密切相关,对小尺度样品疲劳性能与块体材料疲劳性能差异的微观机理进行了探讨,并评价了采用小尺度超薄样品评价CA6NM钢疲劳可靠性的可行性。

关键词 马氏体不锈钢疲劳性能小尺度样品尺寸效应核电材料    
Abstract

Since structural components in the nuclear power plant are unable to be disassembled during their in service process, it is an urgent and key problem how to quickly and non-destructively evaluate fatigue reliability of these key structural components by using miniature specimens. Fatigue properties of miniature specimens of CA6NM martensite stainless steel for impellers in the nuclear pump were obtained by using symmetrically bending fatigue loading and uniaxial tension-tension fatigue loading, respectively. A comparison of fatigue properties between the miniature specimens and bulk specimens was conducted to examine feasibility for the evaluation of fatigue reliability of the CA6NM steel using miniature specimens. The results show that tensile strength of the 40 μm-thick CA6NM specimens is slightly higher than that of the bulk specimens, but elongation of the 40 μm-thick specimens is lower than that of the bulk counterparts. In low cycle fatigue regime, fatigue strength of the 40 μm-thick specimens subjected to uniaxial tension-tension fatigue loading is lower than that of the standard bulk counterparts. With decreasing the applied stress amplitude, the difference in fatigue properties gradually decreases, and the fatigue limit of the miniature specimen is close to that of the bulk counterparts. Fatigue strength of the 40 μm-thick specimens subjected to bending fatigue loading is much higher than that subjected to uniaxial tension-tension fatigue loading, and also higher than that of the bulk counterparts. Fatigue strength of the miniature specimens is related to the loading mode. The difference in the fatigue mechanism between the miniature specimens and the bulk counterparts is discussed, and the feasibility to evaluate fatigue reliability of the steel using miniature specimens is addressed.

Key wordsmartensite stainless steel    fatigue property    miniature specimen    size effect    nuclear power material
收稿日期: 2018-01-15      出版日期: 2018-04-23
ZTFLH:  TG142.71  
基金资助:国家自然科学基金项目Nos.51771207和51501117
作者简介:

作者简介 马也飞,男,1994年生,硕士

引用本文:

马也飞, 宋竹满, 张思倩, 陈立佳, 张广平. 小尺度CA6NM马氏体不锈钢样品疲劳性能评价研究[J]. 金属学报, 2018, 54(10): 1359-1367.
Yefei MA, Zhuman SONG, Siqian ZHANG, Lijia CHEN, Guangping ZHANG. Evaluation of Fatigue Properties of CA6NM Martensite Stainless Steel Using Miniature Specimens. Acta Metall, 2018, 54(10): 1359-1367.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2018.00023      或      http://www.ams.org.cn/CN/Y2018/V54/I10/1359

图1  实验用3种CA6NM马氏体不锈钢样品的形状及尺寸示意图
图2  微米厚度悬臂梁样品相对电阻随疲劳加载周次变化曲线和悬臂梁样品在给定加载挠度下的变形形貌观察与标定
图3  CA6NM马氏体不锈钢的显微组织及马氏体板条长度与宽度统计分析
图4  块体和40 μm厚CA6NM马氏体不锈钢样品的拉伸应力-应变曲线
图5  CA6NM马氏体不锈钢的40 μm厚悬臂梁样品应变幅-疲劳寿命关系及转换为应力比R=0.1下的应力幅-疲劳寿命曲线
图6  应力幅为402 MPa下对称弯曲疲劳加载的超薄样品断口及表面损伤SEM像
图7  应力幅为230 MPa下的超薄样品拉-拉疲劳断口和表面损伤的SEM像
图8  应力幅为261 MPa的块体样品拉-压疲劳断裂行为的SEM像
图9  受厚度控制的CA6NM马氏体不锈钢样品疲劳损伤行为示意图
[1] Lu Y G, Zhu R S, Wang X L, et al.Study on gas-liquid two-phase all-characteristics of CAP1400 nuclear main pump[J]. Nucl. Eng. Des., 2017, 319: 140
doi: 10.1016/j.nucengdes.2017.05.001
[2] Li Y.Study of unsteady flow and fatigue reliability of the reactor coolant pump's impeller [D]. Shanghai: Shanghai Jiao Tong University, 2009(李颖. 核主泵叶轮非定常流场及疲劳寿命可靠性分析 [D]. 上海: 上海交通大学, 2009)
[3] Ma G J, Hu G J, Wu C W.Thermal fatigue analysis and life prediction of nuclear pump shaft surface[J]. Chin. J. Solid Mech., 2015, 36(suppl.1): 145(马国军, 胡光举, 吴承伟. 核主泵主轴表面热疲劳分析与寿命评估[J]. 固体力学学报, 2015, 36(增刊1): 145)
[4] Liu S, Li Z L, Guan Z Q.Analysis on the mechanical-thermal coupling fatigue of the primary pump shaft[J]. China Nucl. Power, 2013, 6: 22(刘松, 李姿琳, 关振群. 核主泵主轴机械-热耦合疲劳分析[J]. 中国核电, 2013, 6: 22)
[5] Trudel A, Lévesque M, Brochu M.Microstructural effects on the fatigue crack growth resistance of a stainless steel CA6NM weld[J]. Eng. Fract. Mech., 2014, 115: 60
doi: 10.1016/j.engfracmech.2013.11.013
[6] Mirakhorli F, Cao X, Pham X T, et al.Phase structures and morphologies of tempered CA6NM stainless steel welded by hybrid laser-arc process[J]. Mater. Charact., 2017, 123: 264
doi: 10.1016/j.matchar.2016.10.029
[7] Ma S Y, Chen R, He X C, et al.Shot peening induced strengthening of the surface layer of martensite stainless Steel 0Cr13Ni4Mo[J]. Acta Metall. Sin., 2005, 41: 28(马素媛, 陈瑞, 贺笑春等. 0Cr13Ni4Mo马氏体不锈钢表层的喷丸强化[J]. 金属学报, 2005, 41: 28)
doi: 10.3321/j.issn:0412-1961.2005.01.006
[8] Geng C W, He S S, Yu B.Development of martensitic stainless steel ZG0Cr13Ni4Mo[J]. Met. Phys. Examinat. Test., 1992, (4): 13(耿承伟, 何树生, 于波. ZG0Cr13Ni4Mo马氏体不锈钢研制[J]. 物理测试, 1992, (4): 13)
[9] Wang S X, Jia W, Wang Y L.Effect of nitrogen on mechanical properties of martensitic stainless steel 0Cr13Ni4Mo[J]. Spec. Steel, 2001, 22(5): 23(王淑霞, 贾伟, 王毓麟. 氮对0Cr13Ni4 Mo马氏体不锈钢机械性能的影响[J]. 特殊钢, 2001, 22(5): 23)
doi: 10.3969/j.issn.1003-8620.2001.05.008
[10] Zhang T, Gao Y P, Tian F, et al.Failure analysis on fracture of 0Cr13Ni4Mo stainless steel shaft of a steam feed pump in a power unit[J]. Phys. Test. Chem. Anal.(Phys. Test.), 2015, 51: 725(张涛, 高云鹏, 田峰等. 电站汽动给水泵0Cr13Ni4Mo不锈钢主轴断裂失效分析[J]. 理化检验(物理分册), 2015, 51: 725)
[11] Cai Q K, Song B, Gao W Q, et al.Hydrogen-induced failure of 0Cr13Ni4Mo casting steel by aquatic corrosion-fatigue[J]. J. Northeast Univ. Technol., 1987, (2): 202(才庆魁, 宋斌, 高文清等. ZG0Cr13Ni4Mo钢在水介质中腐蚀疲劳过程的氢致开裂分析[J]. 东北工学院学报, 1987, (2): 202)
[12] Gao Y K, Yin Y F, Li X B.Influence of surface integrity on fatigue property for martensite stainless steel[J]. Heat Treat. Met., 2002, 27(8): 30(高玉魁, 殷源发, 李向斌. 表面完整性对马氏体不锈钢疲劳性能的影响[J]. 金属热处理, 2002, 27(8): 30)
doi: 10.3969/j.issn.0254-6051.2002.08.014
[13] Winck L B, Ferreira J L A, Araujo J A, et al. Surface nitriding influence on the fatigue life behavior of ASTM A743 steel type CA6NM[J]. Surf. Coat. Technol., 2013, 232: 844
doi: 10.1016/j.surfcoat.2013.06.110
[14] Da Silva B L, Oliveira F, Araújo J A, et al. The effect of mean stress on the fatigue behavior of ASTM A743 CA6NM alloy steel [A]. 20th International Congress of Mechanical Engineering[C]. RS: Gramado, 2009: 1
[15] Dymáček P.Recent developments in small punch testing: Applications at elevated temperatures[J]. Theor. Appl. Fract. Mec., 2016, 86: 25
doi: 10.1016/j.tafmec.2016.09.013
[16] Zhang B, Lei L M, Yang J, et al.Fatigue properties of titanium alloy thin foils for MEMS applications[J]. Mater. Lett., 2012, 89: 302
doi: 10.1016/j.matlet.2012.08.134
[17] Zhang B, Song Z M, Lei L M, et al.Geometrical scale-sensitive fatigue properties of Ti-6.5Al-3.5Mo-1.5Zr-0.3Si alloys with α/β lamellar microstructures[J]. J. Mater. Sci. Technol., 2014, 30: 1284
doi: 10.1016/j.jmst.2014.07.012
[18] Zhang G P, Takashima K, Higo Y.Size effects on deformation and fatigue behavior of a micron-sized stainless steel[J]. Acta Metall. Sin., 2005, 41: 337(张广平, 高岛和希, 肥後矢吉. 微米尺寸不锈钢的形变与疲劳行为的尺寸效应[J]. 金属学报, 2005, 41: 337)
[19] Zhang G P, Takashima K, Shimojo M, et al.Fatigue behavior of microsized austenitic stainless steel specimens[J]. Mater. Lett., 2003, 57: 1555
doi: 10.1016/S0167-577X(02)01023-6
[20] Zhang G P, Wang Z G.Progress in fatigue of small dimensional materials[J]. Acta Metall. Sin., 2005, 41: 1(张广平, 王中光. 小尺度材料的疲劳研究进展[J]. 金属学报, 2005, 41: 1)
doi: 10.3321/j.issn:0412-1961.2005.01.001
[21] Li H X, Bo C Y, Yang B.Study on repairing process of casting defects for martensitic stainless steel turbine blade[J]. Foundry Eng., 2015, (5): 27(李红霞, 柏长友, 杨保. 马氏体不锈钢水轮机叶片铸造缺陷修补工艺的研究[J]. 铸造工程, 2015, (5): 27)
[22] Dai C Y, Zhang G P, Yan C.Size effects on tensile and fatigue behaviour of polycrystalline metal foils at the micrometer scale[J]. Philos. Mag., 2011, 91: 932
doi: 10.1080/14786435.2010.538017
[23] Xu J.Fatigue behavior of FCC-structured metals at micron scales: Effects of length scale and strain gradient [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2014(徐进. 微米尺度面心立方金属疲劳行为研究: 尺寸与应变梯度效应 [D]. 沈阳: 中国科学院金属研究所, 2014)
[24] Suresh S.Fatigue of Materials [M]. 2nd Ed., London: Cambridge University Press, 1998: 161
[25] Da Silva B L, De Oliveira F, Sá M V C, et al. Characterization of ASTM A743 CA6NM alloy steel used in hydrogenator components [A]. 21th International Congress of Mechanical Engineering[C]. Natal, RN: Natal, 2007: 1
[26] Weiss B, Gröger V, Khatibi G, et al.Characterization of mechanical and thermal properties of thin Cu foils and wires[J]. Sen. Actuators, 2002, 99A: 172
doi: 10.1016/S0924-4247(01)00877-9
[27] Demir E, Raabe D.Mechanical and microstructural single-crystal Bauschinger effects: Observation of reversible plasticity in copper during bending[J]. Acta Mater., 2010, 58: 6055
doi: 10.1016/j.actamat.2010.07.023
[28] Geers M G D, Brekelmans W A M, Janssen P J M. Size effects in miniaturized polycrystalline FCC samples: Strengthening versus weakening[J]. Int. J. Solids Struct., 2006, 43: 7304
doi: 10.1016/j.ijsolstr.2006.05.009
[29] Fleck N A, Muller G M, Ashby M F, et al.Strain gradient plasticity: Theory and experiment[J]. Acta Metall. Mater., 1994, 42: 475
doi: 10.1016/0956-7151(94)90502-9
[30] Huang K Z, Qiu X M, Jiang H Q.Recent advances in strain gradient plasticity-II—Mechanism-based strain gradient (MSG) plasticity[J]. J. Mech. Strength, 1999, 21: 161(黄克智, 邱信明, 姜汉卿. 应变梯度理论的新进展(二)——基于细观机制的MSG应变梯度塑性理论[J]. 机械强度, 1999, 21: 161)
[31] Fleck N A, Hutchinson J W.A Phenomenological theory for strain gradient effects in plasticity[J]. J. Mech. Phys. Solids, 1993, 41: 1825
doi: 10.1016/0022-5096(93)90072-N
[32] Yang J.Mechanical properties of microstructure units in lamellar structured α+β titanium alloys [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2017(杨佳. 片层组织α+β钛合金结构单元的力学性能研究 [D]. 沈阳: 中国科学院金属研究所, 2017)
[1] 张广平, 陈红蕾, 罗雪梅, 张滨. 微纳米尺度金属导电材料热疲劳研究进展[J]. 金属学报, 2018, 54(3): 357-366.
[2] 杨蕊,潘艳,陈威,孙巧艳,肖林,孙军. 微尺度Ti-10V-2Fe-3Al单晶压缩变形行为及其微观机制*[J]. 金属学报, 2016, 52(2): 135-142.
[3] 孙军, 张金钰, 吴凯, 刘刚. Cu系纳米金属多层膜微柱体的形变与损伤及其尺寸效应*[J]. 金属学报, 2016, 52(10): 1249-1258.
[4] 徐滨士,方金祥,董世运,刘晓亭,闫世兴,宋超群,夏丹. FV520B不锈钢激光熔覆热影响区组织演变及其对力学性能的影响*[J]. 金属学报, 2016, 52(1): 1-9.
[5] 郭跃岭, 韩恩厚, 王俭秋. 锻造和热处理对316LN不锈钢在高温碱性溶液中应力腐蚀行为的影响*[J]. 金属学报, 2015, 51(6): 659-667.
[6] 黄海威, 王镇波, 刘莉, 雍兴平, 卢柯. 马氏体不锈钢上梯度纳米结构表层的形成及其对电化学腐蚀行为的影响*[J]. 金属学报, 2015, 51(5): 513-518.
[7] 王志胜, 陈祥, 李言祥, 张华伟, 刘源. B对铜合金压铸热作模具钢高温力学及热疲劳性能的影响*[J]. 金属学报, 2015, 51(5): 519-526.
[8] 张盛华,王培,李殿中,李依依. ZG06Cr13Ni4Mo马氏体不锈钢中TRIP效应的同步辐射高能X射线原位研究*[J]. 金属学报, 2015, 51(11): 1306-1314.
[9] 杨金侠, 孙元, 金涛, 孙晓峰, 胡壮麒. 一种细晶铸造镍基高温合金的组织与力学性能*[J]. 金属学报, 2014, 50(7): 839-844.
[10] 张艳斌, 张立民, 张继旺, 曾京. 阳极氧化处理对2014-T6铝合金弯曲疲劳性能的影响*[J]. 金属学报, 2014, 50(6): 715-721.
[11] 黄晓旭. 金属强度的尺寸效应*[J]. 金属学报, 2014, 50(2): 137-140.
[12] 张金钰, 刘刚, 孙军. 纳米金属多层膜的变形与断裂行为及其尺寸效应*[J]. 金属学报, 2014, 50(2): 169-182.
[13] 安祥海, 吴世丁, 张哲峰. 层错能对纳米晶Cu-Al合金微观结构、拉伸及疲劳性能的影响*[J]. 金属学报, 2014, 50(2): 191-201.
[14] 王帅, 杨春光, 徐大可, 沈明钢, 南黎, 杨柯. 热处理对3Cr13MoCu马氏体不锈钢抗菌性能的影响[J]. 金属学报, 2014, 50(12): 1453-1460.
[15] 罗庆洪 李春志 娄艳芝 赵振业. 磨削工艺对渗碳M50NiL钢表面变质层微观结构和性能及疲劳性能影响[J]. 金属学报, 2012, 48(2): 194-198.