Please wait a minute...
金属学报  2018, Vol. 54 Issue (10): 1417-1427    DOI: 10.11900/0412.1961.2018.00020
  本期目录 | 过刊浏览 |
6061铝合金表面ZnAl-LDHs层的制备及其耐腐蚀性能
张玉圣1,2, 王友彬1,2(), 李纯民1,2, 周秉涛1,2, 程珂珂1,2, 韦悦周1,2
1 广西大学广西有色金属及特色材料加工重点实验室 南宁 530004
2 广西大学资源环境与材料学院 南宁 530004
Preparation and Corrosion Resistance of the ZnAl-LDHs Film on 6061 Al Alloy Surface
Yusheng ZHANG1,2, Youbin WANG1,2(), Chunmin LI1,2, Bingtao ZHOU1,2, Keke CHENG1,2, Yuezhou WEI1,2
1 Guangxi Key Laboratory of Processing for Non-Ferrous Metallic and Featured Materials, Guangxi University, Nanning 530004, China
2 School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
引用本文:

张玉圣, 王友彬, 李纯民, 周秉涛, 程珂珂, 韦悦周. 6061铝合金表面ZnAl-LDHs层的制备及其耐腐蚀性能[J]. 金属学报, 2018, 54(10): 1417-1427.
Yusheng ZHANG, Youbin WANG, Chunmin LI, Bingtao ZHOU, Keke CHENG, Yuezhou WEI. Preparation and Corrosion Resistance of the ZnAl-LDHs Film on 6061 Al Alloy Surface[J]. Acta Metall Sin, 2018, 54(10): 1417-1427.

全文: PDF(10413 KB)   HTML
摘要: 

采用原位生长的方法,首先在6061铝合金表面制备了层间含NO3-的ZnAl-LDHs (layered double hydroxides,层状双金属氢氧化物)层,然后将正钒酸根(VO43-)和偏钒酸根(VO3-) 2种缓蚀剂离子插入ZnAl-LDHs-NO3层板间,在6061铝合金表面制备了ZnAl-LDHs-VO4和ZnAl-LDHs-VO3层。通过XRD、FT-IR和SEM等技术研究了上述3种ZnAl-LDHs层的晶体结构、成分组成和表面形貌,并分析了ZnAl-LDHs层的生长行为;通过电化学工作站和超景深3D视频显微镜研究了6061铝合金表面3种ZnAl-LDHs层在3.5%NaCl水溶液中的耐腐蚀行为。结果表明,6061铝合金表面原位制备的ZnAl-LDHs层呈片状垂直于基体生长,能够完全覆盖在铝合金表面。与6061铝合金基体相比,含ZnAl-LDHs层的铝合金具有较高的腐蚀电位(Ecorr)、较小的腐蚀电流(Icorr)和较大的电荷转移电阻(Rct)。这说明ZnAl-LDHs层能够明显提高6061铝合金的耐腐蚀性能,可用于6061铝合金表面的防腐蚀保护。在6061铝合金表面的3种ZnAl-LDHs层中,ZnAl-LDHs-VO3的耐腐蚀性能最高。

关键词 铝合金ZnAl-LDHs层腐蚀    
Abstract

6061 Al alloy is widely used for structural components in the structural, building, aerospace and automobile industry because of their good extrude-ability, high strength and low density. 6061 Al alloy is easily corroded during the corrosive environments containing Cl-, which lead to the decreasing of the alloy service life. Therefore, the Al alloy need to adopt surface treatment to improve the corrosion resistance. The chromate passivation was the most effective surface treatment technology of Al alloys in the past. However, Cr(VI) could pollute the environment and harmful to human body. Thus, it is necessary to develop chromium-free films to protect Al alloy. Layered double hydroxides (LDHs) are an environment-friendly and smart material, which could be used for anticorrosion film. The inhibitor can be inserted into the film layer due to its unique anion exchanging capacity. Therefore, the LDHs is acquired self-healing performance and applied to the anticorrosion field of Al alloy. Meanwhile, vanadate is a good inhibitor and it has many forms under different pH conditions. Moreover, different forms of vanadate have different influence on LDHs film. The corrosion resistance of LDHs and its modified form films on Al alloys need deep study. In this work, ZnAl-LDHs films with NO3- were prepared on the suface of 6061 Al alloy via a facile in-situ growth method, and then ZnAl-LDHs-NO3 films were intercalated with the corrosion inhibitor VO43- and VO3- to obtain the ZnAl-LDHs-VO4 and ZnAl-LDHs-VO3 films, respectively. The structure, morphology and composition of as-prepared ZnAl-LDHs films were investigated by XRD, fourier infrared spectrometer (FT-IR) and SEM; the corrosion behavior of ZnAl-LDHs films in the 3.5%NaCl (mass fraction) solution were studied by the electrochemical workstation and the 3D microscope. The results show that the plate-like ZnAl-LDHs microcrystals are perpendicular to the substrate and cover almost the entire Al alloy substrate surface. Compared with the 6061 Al substrate, ZnAl-LDHs films can not only decrease the corrosion current (Icorr), but also increase the corrosion potential (Ecorr) and charge transfer resistance (Rct) of the 6061 Al alloy. It is suggested that ZnAl-LDHs films could significantly enhance the corrosion resistance of 6061 Al substrate, indicating an effective protection for 6061 Al alloy by the ZnAl-LDHs film. The ZnAl-LDH-VO3 film is of the highest corrosion resistance in the studied ZnAl-LDHs films.

Key wordsAl alloy    ZnAl-LDHs film    corrosion
收稿日期: 2018-01-12     
ZTFLH:  TG178  
基金资助:广西自然科学基金项目No.2017GXNSFBA198202和广西创新驱动发展专项(科技重大专项)项目No.AA17204100
作者简介:

作者简介 张玉圣,男,1992年生,硕士生

图1  6061铝合金基体及表面不同ZnAl-LDHs层的XRD谱
图2  6061铝合金表面不同ZnAl-LDHs层的FT-IR谱
图3  6061铝合金表面不同ZnAl-LDHs层的SEM像及其相应的EDS面扫描图
图4  6061铝合金基体及不同ZnAl-LDHs层在3.5%NaCl溶液中的极化曲线
Specimen Ecorr / V Icorr / (μAcm-2) Ep / V
6061 Al substrate -0.758 0.315 -0.538
ZnAl-LDHs-NO3 -0.692 0.057 -0.405
ZnAl-LDHs-VO4 -0.655 0.031 -0.233
ZnAl-LDHs-VO3 -0.615 0.014 -0.150
表1  6061铝合金基体及不同ZnAl-LDHs层的电化学参数
图5  6061铝合金基体及表面不同ZnAl-LDHs层的极化腐蚀形貌
图6  6061铝合金基体及表面不同ZnAl-LDHs层极化腐蚀后的三维形貌
Area O Al Cl Zn N V
A1 74.88 24.27 0.85 - - -
A2 51.10 48.90 - - - -
B1 75.56 13.82 - - 10.62 -
B2 45.21 43.98 - 0.74 10.07 -
C1 74.46 24.56 0.98 - - -
C2 50.57 42.49 0.94 4.25 - 1.76
D1 52.25 47.49 - - - 0.39
D2 57.71 25.14 0.71 12.39 - 4.05
表2  图7中各微区极化腐蚀后的EDS分析
图7  6061铝合金基体及表面不同ZnAl-LDHs层极化腐蚀后的SEM像
图8  6061铝合金基体和表面不同ZnAl-LDHs层的EIS及其等效电路图
Specimen CPELDHs / (Ω-1cm-2s-n1) RLDHs
Ωcm2
CPEdl / (Ω-1cm-2s-n2) Rct
Ωcm2
Y1 n1 Y2 n2
6061 Al substrate 1.34×10-5 0.25 9.01×100 5.37×10-6 0.85 9.86×103
ZnAl-LDH-NO3 4.25×10-6 0.97 3.41×102 4.25×10-6 0.87 9.28×104
ZnAl-LDH-VO4 3.59×10-6 0.77 1.27×103 4.33×10-6 0.91 1.37×106
ZnAl-LDH-VO3 4.39×10-6 0.76 1.25×103 4.04×10-6 0.91 5.67×106
表3  6061铝合金基体和表面不同ZnAl-LDHs层在3.5%NaCl溶液中的EIS等效电路拟合结果
图9  6061铝合金表面ZnAl-LDHs层的制备过程图
[1] Dursun T, Soutis C.Recent developments in advanced aircraft aluminium alloys[J]. Mater. Des., 2014, 56: 862
[2] Zou Y, Liu Q, Jia Z H, et al.The intergranular corrosion behavior of 6000-series alloys with different Mg/Si and Cu content[J]. Appl. Surf. Sci., 2017, 405: 489
[3] Mondolfo L F.Aluminum Alloys: Structure and Properties[M]. London: Butterworths, 1976: 1
[4] Li H, Mao Q Z, Wang Z X, et al.Effect of high temperature pre-ageing and low-temperature re-ageing on mechanical properties and intergranular corrosion susceptibility of Al-Mg-Si-Cu alloys[J]. Acta Metall. Sin., 2014, 50: 1357(李海, 毛庆忠, 王芝秀等. 高温预时效+低温再时效对Al-Mg-Si-Cu合金力学性能及晶间腐蚀敏感性的影响[J]. 金属学报, 2014, 50: 1357)
[5] Sun F L, Li X G, Lu L, et al.Corrosion behavior of 5052 and 6061 aluminum alloys in deep ocean environment of south China sea[J]. Acta Metall. Sin., 2013, 49: 1219(孙飞龙, 李晓刚, 卢琳等. 5052和6061铝合金在中国南海深海环境下的腐蚀行为研究[J]. 金属学报, 2013, 49: 1219)
[6] Li H, Zhao P P, Wang Z X, et al.The intergranular corrosion susceptibility of a heavily overaged Al-Mg-Si-Cu alloy[J]. Corros. Sci., 2016, 107: 113
[7] Li H, Pan D Z, Wang Z X, et al.Influence of T6I6 temper on tensile and intergranular corrosion properties of 6061 aluminum alloy[J]. Acta Metall. Sin., 2010, 46: 494(李海, 潘道召, 王芝秀等. T6I6时效对6061铝合金拉伸及晶间腐蚀性能的影响[J]. 金属学报, 2010, 46: 494)
[8] Elabar D, La Monica G R, Santamaria M, et al. Anodizing of aluminium and AA 2024-T3 alloy in chromic acid: Effects of sulphate on film growth[J]. Surf. Coat. Technol., 2017, 309: 480
[9] Twite R L, Bierwagen G P.Review of alternatives to chromate for corrosion protection of aluminum aerospace alloys[J]. Prog. Org. Coat., 1998, 33: 91
[10] Boisier G, Lamure A, Pébère N, et al.Corrosion protection of AA2024 sealed anodic layers using the hydrophobic properties of carboxylic acids[J]. Surf. Coat. Technol., 2009, 203: 3420
[11] Tedim J, Poznyak S K, Kuznetsova A, et al.Enhancement of active corrosion protection via combination of inhibitor-loaded nanocontainers[J]. ACS. Appl. Mater. Interfaces, 2010, 2: 1528
[12] Xu L M, Wang X, Lei L, et al.Densification process of cerium-based conversion coatings on AZ31 magnesium alloy[J]. Chin. J. Nonferrous Met., 2013, 23: 3135(徐洛民, 王昕, 雷黎等. AZ31镁铝合金铈盐转化膜的致密化处理[J]. 中国有色金属学报, 2013, 23: 3135)
[13] Critchlow G W, Yendall K A, Bahrani D, et al.Strategies for the replacement of chromic acid anodising for the structural bonding of aluminium alloys[J]. Int. J. Adhes. Adhes., 2006, 26: 419
[14] Heller D K, Fahrenholtz W G, O'Keefe M J. The effect of post-treatment time and temperature on cerium-based conversion coatings on Al 2024-T3[J]. Corros. Sci., 2010, 52: 360
[15] Moutarlier V, Gigandet M P, Pagetti J, et al.An electrochemical approach to the anodic oxidation of Al 2024 alloy in sulfuric acid containing inhibitors[J]. Surf. Coat. Technol., 2002, 161: 267
[16] Cerezo J, Vandendael I, Posner R, et al.Initiation and growth of modified Zr-based conversion coatings on multi-metal surfaces[J]. Surf. Coat. Technol., 2013, 236: 284
[17] Williams G R, O'Hare D. Towards understanding, control and application of layered double hydroxide chemistry[J]. J. Mater. Chem., 2006, 16: 3065
[18] Li C M, Wei Y Z, Wang X P, et al.Efficient and rapid adsorption of iodide ion from aqueous solution by porous silica spheres loaded with calcined Mg-Al layered double hydroxide[J]. J. Taiwan Inst. Chem. Eng., 2018, 85: 193
[19] Zhang Y, Yu P H, Wang J P, et al.LDHs/graphene film on aluminum alloys for active protection[J]. Appl. Surf. Sci., 2018, 433: 927
[20] Liu Y, Yu T W, Cai R, et al.One-pot synthesis of NiAl-CO3 LDH anti-corrosion coatings from CO2-saturated precursors[J]. RSC Adv., 2015, 5: 29552
[21] Zhang F, Liu Z G, Zeng R C, et al.Corrosion resistance of Mg-Al-LDH coating on magnesium alloy AZ31[J]. Surf. Coat. Technol., 2014, 258: 1152
[22] Zhang F Z, Sun M, Xu S L, et al.Fabrication of oriented layered double hydroxide films by spin coating and their use in corrosion protection[J]. Chem. Eng. J., 2008, 141: 362
[23] Wu F X, Liang J, Peng Z J, et al.Electrochemical deposition and characterization of Zn-Al layered double hydroxides (LDHs) films on magnesium alloy[J]. Appl. Surf. Sci., 2014, 313: 834
[24] Buchheit R G, Guan H, Mahajanam S, et al.Active corrosion protection and corrosion sensing in chromate-free organic coatings[J]. Prog. Org. Coat, 2003, 47: 174
[25] Zhang F, Zhang C L, Song L, et al.Corrosion resistance of superhydrophobic Mg-Al layered double hydroxide coatings on aluminum alloys[J]. Acta Metall. Sin.(Engl. Lett.), 2015, 28: 1373
[26] Tedim J, Zheludkevich M L, Bastos A C, et al.Influence of preparation conditions of Layered Double Hydroxide conversion films on corrosion protection[J]. Electrochim. Acta, 2014, 117: 164
[27] Tedim J, Bastos A C, Kallip S, et al.Corrosion protection of AA2024-T3 by LDH conversion films. Analysis of SVET results[J]. Electrochim. Acta, 2016, 210: 215
[28] Iannuzzi M, Frankel G S.Mechanisms of corrosion inhibition of AA2024-T3 by vanadates[J]. Corros. Sci., 2007, 49: 2371
[29] Iannuzzi M, Young T, Frankel G S.Aluminum alloy corrosion inhibition by vanadates[J]. J. Electrochem. Soc., 2006, 153: B533
[30] Tedim J, Zheludkevich M L, Salak A N, et al.Nanostructured LDH-container layer with active protection functionality[J]. J. Mater. Chem., 2011, 21: 15464
[31] Zheludkevich M L, Poznyak S K, Rodrigues L M, et al.Active protection coatings with layered double hydroxide nanocontainers of corrosion inhibitor[J]. Corros. Sci., 2010, 52: 602
[32] Kloprogge J T, Weier M, Crespo I, et al.Intercalation of iron hexacyano complexes in Zn, Al hydrotalcite. Part 2. A mid-infrared and Raman spectroscopic study[J]. J. Solid State Chem., 2004, 177: 1382
[33] Zeng R C, Liu Z G, Zhang F, et al.Corrosion resistance of in-situ Mg-Al hydrotalcite conversion film on AZ31 magnesium alloy by one-step formation[J]. Trans. Nonferr. Met. Soc. China, 2015, 25: 1917
[34] Salak A N, Tedim J, Kuznetsova A I, et al.Comparative X-ray diffraction and infrared spectroscopy study of Zn-Al layered double hydroxides: Vanadate vs nitrate[J]. Chem. Phys., 2012, 397: 102
[35] Liang W J, Rometsch P A, Cao L F, et al.General aspects related to the corrosion of 6xxx series aluminium alloys: Exploring the influence of Mg/Si ratio and Cu[J]. Corros. Sci., 2013, 76: 119
[36] Qiao Y X, Zhou Y, Chen S J, et al.Effect of bobbin tool friction stir welding on microstructure and corrosion behavior of 6061-T6 aluminum alloy joint in 3.5%NaCl solution[J]. Acta. Metall. Sin., 2016, 52: 1395(乔岩欣, 周洋, 陈书锦等. 双轴肩搅拌摩擦焊对6061-T6铝合金表面组织及其在3.5%NaCl中腐蚀行为的影响[J]. 金属学报, 2016, 52: 1395)
[37] Shahidi M, Gholamhosseinzadeh M R.Electrochemical evaluation of AA6061 aluminum alloy corrosion in citric acid solution without and with chloride ions[J]. J. Electroanalyt. Chem., 2015, 757: 8
[38] Zaid B, Saidi D, Benzaid A, et al.Effects of pH and chloride concentration on pitting corrosion of AA6061 aluminum alloy[J]. Corros. Sci., 2008, 50: 1841
[39] Wang B B, Wang Z Y, Cao G W, et al.Localized corrosion of aluminum alloy 2024 exposed to salt lake atmospheric environment in western China[J]. Acta Metall. Sin., 2014, 50: 49(王彬彬, 王振尧, 曹公望等. 2024铝合金在中国西部盐湖大气环境中的局部腐蚀行为[J]. 金属学报, 2014, 50: 49)
[40] Serdechnova M, Mohedano M, Kuznetsov B, et al.PEO coatings with active protection based on in-situ formed LDH-nanocontainers[J]. J. Electrochem. Soc., 2016, 164: C36
[41] Serdechnova M, Mohedano M, Bouali A C, et al.Role of phase composition of PEO coatings on AA2024 for in-situ LDH growth[J]. Coatings, 2017, 7: 190
[1] 赵平平, 宋影伟, 董凯辉, 韩恩厚. 不同离子对TC4钛合金电化学腐蚀行为的协同作用机制[J]. 金属学报, 2023, 59(7): 939-946.
[2] 司永礼, 薛金涛, 王幸福, 梁驹华, 史子木, 韩福生. Cr添加对孪生诱发塑性钢腐蚀行为的影响[J]. 金属学报, 2023, 59(7): 905-914.
[3] 王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.
[4] 李小涵, 曹公望, 郭明晓, 彭云超, 马凯军, 王振尧. 低碳钢Q235、管线钢L415和压力容器钢16MnNi在湛江高湿高辐照海洋工业大气环境下的初期腐蚀行为[J]. 金属学报, 2023, 59(7): 884-892.
[5] 陈润农, 李昭东, 曹燕光, 张启富, 李晓刚. 9%Cr合金钢在含Cl环境中的初期腐蚀行为及局部腐蚀起源[J]. 金属学报, 2023, 59(7): 926-938.
[6] 张奇亮, 王玉超, 李光达, 李先军, 黄一, 徐云泽. EH36钢在不同粒径沙砾冲击下的冲刷腐蚀耦合损伤行为[J]. 金属学报, 2023, 59(7): 893-904.
[7] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[8] 韩恩厚, 王俭秋. 表面状态对核电关键材料腐蚀和应力腐蚀的影响[J]. 金属学报, 2023, 59(4): 513-522.
[9] 王京阳, 孙鲁超, 罗颐秀, 田志林, 任孝旻, 张洁. 以抗CMAS腐蚀为目标的稀土硅酸盐环境障涂层高熵化设计与性能提升[J]. 金属学报, 2023, 59(4): 523-536.
[10] 廖京京, 张伟, 张君松, 吴军, 杨忠波, 彭倩, 邱绍宇. Zr-Sn-Nb-Fe-V合金在过热蒸汽中的周期性钝化-转折行为[J]. 金属学报, 2023, 59(2): 289-296.
[11] 夏大海, 计元元, 毛英畅, 邓成满, 祝钰, 胡文彬. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制[J]. 金属学报, 2023, 59(2): 297-308.
[12] 常立涛. 压水堆主回路高温水中奥氏体不锈钢加工表面的腐蚀与应力腐蚀裂纹萌生:研究进展及展望[J]. 金属学报, 2023, 59(2): 191-204.
[13] 胡文滨, 张晓雯, 宋龙飞, 廖伯凯, 万闪, 康磊, 郭兴蓬. 共晶高熵合金AlCoCrFeNi2.1H2SO4 溶液中的腐蚀行为[J]. 金属学报, 2023, 59(12): 1644-1654.
[14] 宋嘉良, 江紫雪, 易盼, 陈俊航, 李曌亮, 骆鸿, 董超芳, 肖葵. 高铁转向架用钢G390NH在模拟海洋和工业大气环境下的腐蚀行为及产物演化规律[J]. 金属学报, 2023, 59(11): 1487-1498.
[15] 高建宝, 李志诚, 刘佳, 张金良, 宋波, 张利军. 计算辅助高性能增材制造铝合金开发的研究现状与展望[J]. 金属学报, 2023, 59(1): 87-105.