Please wait a minute...
金属学报  2018, Vol. 54 Issue (10): 1435-1441    DOI: 10.11900/0412.1961.2018.00013
  本期目录 | 过刊浏览 |
高熔点金属Ir和Mo电子束区熔中不同取向晶体的竞争生长
李双明1(), 王斌强1, 刘振鹏1, 钟宏1, 胡锐1, 刘毅2, 罗锡明2
1 西北工业大学凝固技术国家重点实验室 西安 710072
2 昆明贵金属研究所 昆明 650106
Grain Orientation Competitive Growth of High Melting Point Metals Ir and Mo Under Electron Beam Floating Zone Melting
Shuangming LI1(), Binqiang WANG1, Zhenpeng LIU1, Hong ZHONG1, Rui HU1, Yi LIU2, Ximing LUO2
1 State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
2 Kunming Institute of Precious Metals, Kunming 650106, China
全文: PDF(2856 KB)   HTML
摘要: 

通过分析bcc结构金属Mo和fcc结构金属Ir电子束区熔中3种不同取向[100]、[110]和[111]晶体生长,发现金属Mo在平界面凝固下会以[110] 取向择优生长,而在凸界面下可能存在[100]和[110] 2种择优生长方向,取决于界面能各向异性参数a1a2的相对大小,说明电子束区熔中金属Mo单晶通常呈现[110]择优取向,而不是通常认为的[100]择优取向。无论是在平界面还是凸界面下,fcc结构高熔点金属Ir始终以[100]择优取向生长,并通过Ir单晶生长实验得到验证。电子束区熔下需综合考虑晶体生长曲率过冷度和动力学过冷度的影响,小尺寸试样(晶粒尺寸在毫米量级及以下)中晶向选择和淘汰取决于曲率过冷度;大尺寸试样(晶粒尺寸在厘米量级及以上)的晶向选择和淘汰主要依靠动力学过冷度。

关键词 电子束区熔晶粒竞争生长界面能各向异性择优取向    
Abstract

The preparation of single crystal involves the grain orientation competitive growth. For high melting point metals, Mo is a typical bcc crystal structure and its preferred growth orientation of single crystal was revealed to be the [110] direction, different from the known preferred growth orientation [100] for bcc metals during solidification. This disagreement remains unclear. For the high melting point metal Ir that is a fcc crystal structure, its preferred growth orientation of single crystal remains unknown. Based on electron beam floating zone melting (EBFZM), the orientation competitive growth of these two metals Mo and Ir with three different directions [100], [110] and [111] has been analyzed using solidification theory. It shows that the preferred growth orientation of Mo is the [110] direction at a planar front interface. When introducing the interface energy anisotropy, the preferred growth orientation of Mo could be the [100] or the [110] direction, depending on the magnitude of interface energy anisotropy parameters a1 and a2. This result matches well with the experimental results of Mo single crystal prepared by EBFZM. For the fcc structure Ir, its preferred growth orientation always keeps the [100] direction, agreeing with the experimental results of Ir single crystal prepared by EBFZM in this study. Besides, the effects of interface curvature undercooling and kinetic undercooling on the growth behavior of single-crystal metals prepared by EBFZM have been discussed. It demonstrates that when the grain size in the specimen is in the order of about millimeter or less, the curvature undercooling would dominate the grain orientation competitive growth. As the grain size becomes in the order of about centimeter or larger, the kinetic undercooling would prefer the grain competitive growth process.

Key wordselectron beam floating zone melting    grain orientation competitive growth    interface energy anisotropy    preferred growth direction
收稿日期: 2018-01-10      出版日期: 2018-07-12
ZTFLH:  TG292  
基金资助:国家自然科学基金-云南省联合基金项目No.U1202273和国家自然科学基金项目No.51774239
作者简介:

作者简介 李双明,男,1971年生,教授

引用本文:

李双明, 王斌强, 刘振鹏, 钟宏, 胡锐, 刘毅, 罗锡明. 高熔点金属Ir和Mo电子束区熔中不同取向晶体的竞争生长[J]. 金属学报, 2018, 54(10): 1435-1441.
Shuangming LI, Binqiang WANG, Zhenpeng LIU, Hong ZHONG, Rui HU, Yi LIU, Ximing LUO. Grain Orientation Competitive Growth of High Melting Point Metals Ir and Mo Under Electron Beam Floating Zone Melting. Acta Metall, 2018, 54(10): 1435-1441.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2018.00013      或      http://www.ams.org.cn/CN/Y2018/V54/I10/1435

图1  平直界面电子束区熔下Ir和Mo金属晶粒取向生长的动力学过冷度(ΔTk)与生长速率(V)之间的关系
图2  部分fcc金属和Mo的界面能各向异性参数a1和a2的分布(数据来源参考文献[17]),其中d[100]和d[110]分别为[100]和[110]取向的界面刚度)
图3  电子束区熔凸界面下Ir和Mo不同取向生长晶粒的曲率过冷度(ΔTr)与曲率晶粒半径(r)之间的关系
图4  电子束区熔金属Ir和Mo不同取向生长时ΔTr=ΔTk下V与r的关系
图5  电子束区熔下金属Ir的晶粒淘汰过程及单晶XRD谱和Laue取向测试
[1] Kenji A.Why do we study ultra-high purity base metals?[J]. Mater. Trans., JIM, 2000, 41: 233
doi: 10.2320/matertrans1989.41.233
[2] Yang B C, Hu Y D, Cui H L.Trend in development and applications of sputtering target materials[J]. Vacuum, 2002, (1): 1(杨邦朝, 胡永达, 崔红玲. 溅射靶材的应用及发展趋势[J]. 真空, 2002, (1): 1)
doi: 10.3969/j.issn.1002-0322.2002.01.001
[3] Duffar T.Crystal Growth Processes Based on Capillarity: Czochralski, Floating Zone, Shaping and Crucible Techniques[M]. Chichester: John Wiley & Sons Ltd, 2010: 204
[4] Glebovsky V G, Semenov V N, Lomeyko V V.The characteristic features of growth and the real structure of tungsten tube crystals[J]. J. Cryst. Growth, 1989, 98: 487
doi: 10.1016/0022-0248(89)90165-6
[5] Zhang J, Shu D, Rao Q L, et al.Nucleation and growth of high purity aluminum grains in directional solidification bulk sample without electromagnetic stirring[J]. Trans. Nonferrous Met. Soc. China, 2006, 16: 1
doi: 10.1016/S1003-6326(06)60001-0
[6] Xu Z M, Guo Z Q, Li J G.A new method to evaluate the quality of single crystal Cu by an X-ray diffraction butterfly pattern method[J]. Mater. Charact., 2004, 53: 395
doi: 10.1016/j.matchar.2004.09.003
[7] Lee D N, Kim K H, Lee Y G, et al.Factors determining crystal orientation of dendritic growth during solidification[J]. Mater. Chem. Phys., 1997, 47: 154
doi: 10.1016/S0254-0584(97)80044-2
[8] Hu Z W, Li Z K, Zhang Q, et al.Progress on single crystals of refractory metals of their alloys[J]. Rare Met. Mater. Eng., 2007, 36: 367(胡忠武, 李中奎, 张清等. 难熔金属及其合金单晶的发展[J]. 稀有金属材料与工程, 2007, 36: 367)
doi: 10.3321/j.issn:1002-185x.2007.02.041
[9] Xiao D C, Li C Y, Ying T R, et al.Preparation of niobium single crystals with floating zone melting technique and a discussion on its mechanism[J]. Shanghai Met.(Nonferrous Met.), 1983, 4(2): 11(肖德传, 李长英, 应铁如等. 悬浮区熔法制取铌单晶及其机理探讨[J]. 上海金属(有色分册), 1983, 4(2): 11)
[10] Stefanescu D M.Science and Engineering of Casting Solidification [M]. 3rd Ed., Switzerland: Springer International Publishing, 2015: 157
[11] Gonzales F, Rappaz M.Dendrite growth directions in aluminum-zinc alloys[J]. Metall. Mater. Trans., 2006, 37A: 2797
doi: 10.1007/BF02586112
[12] Dantzig J A, Di Napoli P, Friedli J, et al.Dendritic growth morphologies in Al-Zn alloys—Part II: Phase-field computations[J]. Metall. Mater. Trans., 2013, 44A: 5532
doi: 10.1007/s11661-013-1911-8
[13] Haxhimali T, Karma A, Gonzales F, et al.Orientation selection in dendritic evolution[J]. Nat. Mater., 2006, 5: 660
doi: 10.1038/nmat1693 pmid: 16845416
[14] Verstraete M J, Charlier J C.Why is iridium the best substrate for single crystal diamond growth?[J]. Appl. Phys. Lett., 2005, 86: 191917
doi: 10.1063/1.1922571
[15] Glebovsky V G, Semenov V N.Growing single crystals of high-purity refractory metals by electron-beam zone melting[J]. High Temp. Mater. Proc., 1995, 14: 121
doi: 10.1515/HTMP.1995.14.2.121
[16] Cawkwell M J, Nguyen-Manh M, Woodward C, et al.Origin of brittle cleavage in iridium[J]. Science, 2005, 309: 1059
doi: 10.1126/science.1114704 pmid: 16099981
[17] Hoyt J J, Asta M, Sun D Y.Molecular dynamics simulations of the crystal-melt interfacial free energy and mobility in Mo and V[J]. Philos. Mag., 2006, 86: 3651
doi: 10.1080/14786430500156625
[18] Amini M, Laird B B.Kinetic coefficient for hard-sphere crystal growth from the melt[J]. Phys. Rev. Lett., 2006, 97: 216102
doi: 10.1103/PhysRevLett.97.216102 pmid: 17155752
[19] Jiang Q, Lu H M.Size dependent interface energy and its applications[J]. Surf. Sci. Rep., 2008, 63: 427
doi: 10.1016/j.surfrep.2008.07.001
[20] Zee R H, Xiao Z, Chin B A, et al.Processing of single crystals for high temperature applications[J]. J. Mater. Proc. Technol., 2001, 113: 75
doi: 10.1016/S0924-0136(01)00588-X
[21] Napolitano R E, Liu S, Trivedi R.Experimental measurement of anisotropy in crystal-melt interfacial energy[J]. Interface Sci., 2002, 10: 217
doi: 10.1023/A:1015884415896
[22] Keene B J.Review of data for the surface tension of pure metals[J]. Int. Mater. Rev., 1993, 38: 157
doi: 10.1179/imr.1993.38.4.157
[23] Wang H.Research on the technology of molybdenum crystals of refractory metals prepared by electron beam floating zone melting [D]. Xi'an: Northwestern Polytechnical University, 2007(王红. 难熔金属钼晶体的电子束悬浮区熔定向凝固工艺研究 [D]. 西安: 西北工业大学, 2007)
[24] Li S M, Geng Z B, Hu R, et al.Effect of growth angle and solidification rate on the floating zone stability for processing of high-temperature pure metals[J]. Acta Metall. Sin., 2015, 51: 114(李双明, 耿振博, 胡锐等. 高熔点金属区域熔炼中晶体生长角和凝固速率对熔区稳定性的影响[J]. 金属学报, 2015, 51: 114)
[25] Yang J R, Wang H, Wang B Q, et al.Numerical and experimental study of electron beam floating zone melting of Iridium single crystal[J]. J. Mater. Proc. Technol., 2017, 250: 239
doi: 10.1016/j.jmatprotec.2017.07.016
[1] 王锦程, 郭春文, 李俊杰, 王志军. 定向凝固晶粒竞争生长的研究进展[J]. 金属学报, 2018, 54(5): 657-668.
[2] 李双明, 耿振博, 胡锐, 刘毅, 罗锡明. 高熔点金属区域熔炼中晶体生长角和凝固速率对熔区稳定性的影响[J]. 金属学报, 2015, 51(1): 114-120.
[3] 刘印,刘铁,王强,王慧敏,王丽,赫冀成. 强磁场热处理对TbFe2和Tb0.27Dy0.73Fe1.95合金晶体取向、微观形貌和磁致伸缩性能的影响[J]. 金属学报, 2013, 49(9): 1148-1152.
[4] 刘庆华,黄裕金,刘剑,胡侨丹,李建国. Ni-Fe-Ga-Co磁性形状记忆合金定向凝固稳定生长区的组织及择优取向[J]. 金属学报, 2013, 29(4): 391-398.
[5] 韩国民,韩志强,Alan A. Luo,Anil K. Sachdev,柳百成. Mg-Al合金Mg17Al12连续析出相形貌的相场模拟[J]. 金属学报, 2013, 49(3): 277-283.
[6] 彭东剑,林鑫,张云鹏,郭雄,王猛,黄卫东. 界面追踪法研究界面能各向异性对定向凝固枝晶生长的影响[J]. 金属学报, 2013, 49(3): 365-371.
[7] 杨梅 王刚 滕春禹 徐东生 张鉴 杨锐 王云志. Ti-6Al-4V中界面能对α相片层生长的影响三维相场模拟[J]. 金属学报, 2012, 48(2): 148-158.
[8] 马天宇 ; 严密; 王庆伟 . <110>取向Tb--Dy--Fe--Co 合金棒的磁致伸缩均匀性[J]. 金属学报, 2007, 43(7): 688-692 .
[9] 孟广慧; 林鑫; 杜立成; 黄卫东 . 试样厚度对共晶组织形态的影响[J]. 金属学报, 2007, 43(5): 459-464 .
[10] 谢华; 刘剑; 霍颜秋; 李建国 . 定向凝固铁磁形状记忆合金Co-Ni-Ga的择优取向及其组织演化[J]. 金属学报, 2007, 43(4): 417-421 .
[11] 黄辉; 朱明伟; 宫骏; 孙超; 姜辛 . 溶剂、溶胶稳定剂和热处理对溶胶--凝胶法制备的ZnO薄膜微观结构的影响[J]. 金属学报, 2007, 43(10): 1043-1047 .
[12] 李铸国; 华学明; 吴毅雄; 三宅正司 . 低能离子束辅照对溅射镀TiN膜生长的影响[J]. 金属学报, 2005, 41(10): 1087-1090 .
[13] 唐武; 徐可为; 王平; 李弦 . Au/NiCr/Ta多层金属膜择优取向与残余应力的关系[J]. 金属学报, 2002, 38(9): 932-935 .
[14] 于利根;何家文;B.C.Hendrix. 择优取向对X射线应力测试的影响[J]. 金属学报, 1998, 34(6): 667-672.
[15] 蒋成保;周寿增;张茂才;王润. 定向凝固TbDyFe合金的取向、组织和磁致伸缩性能[J]. 金属学报, 1998, 34(2): 164-170.