Please wait a minute...
金属学报  2018, Vol. 54 Issue (9): 1245-1252    DOI: 10.11900/0412.1961.2017.00562
  本期目录 | 过刊浏览 |
高能瞬时电脉冲处理对42CrMo钢组织与性能的影响
潘栋, 赵宇光, 徐晓峰(), 王艺橦, 江文强, 鞠虹
吉林大学材料科学与工程学院汽车材料教育部重点实验室 长春 130025
Effect of High-Energy and Instantaneous Electropulsing Treatment on Microstructure and Propertiesof 42CrMo Steel
Dong PAN, Yuguang ZHAO, Xiaofeng XU(), Yitong WANG, Wenqiang JIANG, Hong JU
Key Laboratory of Automobile Materials, Ministry of Education, Department of Materials Science and Engineering, Jilin University, Changchun 130025, China
全文: PDF(6328 KB)   HTML
摘要: 

采用XRD、SEM及TEM等手段,研究了42CrMo钢经高能瞬时电脉冲及传统处理后组织与性能的变化。结果表明,480 ms电脉冲处理后水冷(EPQ)处理可细化42CrMo钢的晶粒和组织,促进残余奥氏体及孪晶马氏体的形成,处理后的综合力学性能比传统淬火(TQ)态42CrMo钢提高32%;随后的180 ms电脉冲处理后空冷(EPT)处理可提高EPQ态42CrMo钢中残余奥氏体的稳定性,促进复相组织的形成,处理后的综合力学性能比其经传统回火(TT)处理后提高13.9%。

关键词 电脉冲处理42CrMo钢多相组织残余奥氏体强塑积    
Abstract

42CrMo steel was widely used in many industry fields for its excellent hardenability and high temperature strength. Many transmission mechanisms and fasteners, such as roller and heat-resistant gear, are made of this steel. However, the ductility of 42CrMo steel is relatively low after quenching and tempering. During high tempering Mo riched carbides at grain boundary and undecomposable martensite at low tempering are the main reasons for poor ductility of 42CrMo steel. Grain refinement can enhance both strength and ductility significantly, but traditional refinement technology will cause intergranular oxidation so that strengthening effect was weak. Although thermomechanical treatment can achieve dynamic recrystallization, its refinement effect is unstable. Elecropulsing treatment, which makes significant change in microstructure and properties of metals, has been applied in many fields such as, modification of solidified microstructure of liquid metal, healing of fatigue crack, nanocrystallization of amorphous materials and so on. Moreover, this process can produce superior mechanical properties in metals. In order to improve the mechanical properties of 42CrMo steel better, high-energy and instantaneous electropulsing treatment was applied. In this contribution, 42CrMo steel was subjected to traditional and electropulsing treatment individually. It was found that EPQ treatment (480 ms electropulsing treatment, water cooled) results in finer grain, promoting the formation of retained austenite and twin martensite; EPT treatment (180 ms electropulsing treatment, air cooled) can stabilize retained austenite in EPQ specimen and induce multiphase structure. Mechanical properties results indicate that strength-ductility balance of EPQ and EPQ+EPT specimen are 32% and 13.9% higher than that of TQ (traditional quenched) and EPQ+TT (traditional tempered) specimen respectively.

Key wordselectropulsing treatment    42CrMo steel    multiphase microstructure    retained austenite    strength-ductility balance
收稿日期: 2017-12-29      出版日期: 2018-04-25
ZTFLH:  TG142.1  
基金资助:国家自然科学基金项目No.51701080
作者简介:

作者简介 潘 栋,男,1991年生,博士生

引用本文:

潘栋, 赵宇光, 徐晓峰, 王艺橦, 江文强, 鞠虹. 高能瞬时电脉冲处理对42CrMo钢组织与性能的影响[J]. 金属学报, 2018, 54(9): 1245-1252.
Dong PAN, Yuguang ZHAO, Xiaofeng XU, Yitong WANG, Wenqiang JIANG, Hong JU. Effect of High-Energy and Instantaneous Electropulsing Treatment on Microstructure and Propertiesof 42CrMo Steel. Acta Metall Sin, 2018, 54(9): 1245-1252.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2017.00562      或      http://www.ams.org.cn/CN/Y2018/V54/I9/1245

图1  实验工艺流程图及电脉冲处理装置示意图
图2  初始及淬火态试样的OM像
图3  淬火态试样原奥氏体晶粒形貌及数量分布直方图
图4  淬火态试样中马氏体的TEM像及SAED谱
图5  淬火及回火态试样的XRD谱
图6  回火态试样的显微组织
图7  初始态、淬火态和回火态试样的拉伸及加工硬化曲线
State YS / MPa UTS / MPa EL / % n SD / (MPa·%)
As received 625 1100 15.2 - 16720
TQ 936 1820 7.4 0.64 13468
EPQ 1154 1998 8.9 0.83 17782
EPQ+TT 856 1253 19.4 0.82 24308
EPQ+EPT 947 1521 18.2 0.89 27682
表1  初始态、淬火态及回火态试样力学性能
[1] Li Y K, Chen J D, Lu S P.Residual stress in the wheel of 42CrMo steel during quenching[J]. Acta Metall. Sin., 2014, 50: 121(李永奎, 陈俊丹, 陆善平. 42CrMo钢车轮锻件在淬火过程中的残余应力研究[J]. 金属学报, 2014, 50: 121)
[2] Chen J D, Mo W L, Wang P, et al.Effects of tempering temperature on the impact toughness of steel 42CrMo[J]. Acta Metall. Sin., 2012, 48: 1186(陈俊丹, 莫文林, 王培等. 回火温度对42CrMo钢冲击韧性的影响[J]. 金属学报, 2012, 48: 1186)
[3] Li J, Chen Z W, Liu D K.Heat treatment for high strengh blade shaft of 42CrMo steel[J]. Heavy Cast. Forg., 2000, (4): 25(李进, 陈增武, 刘定坤. 42CrMo钢高强度叶片轴的热处理[J]. 大型铸锻件, 2000, (4): 25)
[4] Xu G X, Chen L, Li B, et al.Influence of repeated quenching and tempering on microstructure and mechanical properties of 42CrMo steel[J]. Heat Treat. Met., 2014, 39(5): 112(徐钢新, 陈亮, 李勃等. 多次调质对42CrMo钢组织和力学性能的影响[J]. 金属热处理, 2014, 39(5): 112)
[5] Feng F C, Hong H P, Xiao Y.Dynamic recrystallization rule and model of 42CrMo steel [A]. The 9th CSM Biennial Conference [C]. Beijing: Metallurgical Industry Press, 2013: 2497(冯富春, 洪慧平, 肖玉. 42CrMo4钢动态再结晶规律及动态再结晶模型研究 [A]. 第九届中国钢铁年会论文集 [C]. 北京: 冶金工业出版社, 2013: 2497)
[6] Conrad H.Electro-plasticity in metals and ceramics[J]. Mater. Sci. Eng., 2000, A287: 276
[7] Yang D, Conrad H.Exploratory study into the effects of an electric field and of high current density electropulsing on the plastic deformation of TiAl[J]. Intermetallics, 2001, 9: 943
[8] Mizubayashi H, Okuda S.Structural relaxation induced by passing electric current in amorphous Cu50Ti50 at low temperature[J]. Phys. Rev., 1989, 40B: 8057
[9] Barnak J P, Sprecher A F, Conrad H.Colony (grain) size reduction in eutectic Pb-Sn castings by electropulsing[J]. Scr. Metall. Mater., 1995, 32: 879
[10] Song H, Wang Z J, He X D, et al.Self-healing of damage inside metals triggered by electropulsing stimuli[J]. Sci. Rep., 2017, 7: 7079
[11] Zhang J T, Zhao Y G, Tan J, et al.Microstructure refinement and property improvement of metastable austenitic manganese steel induced by electropulsing[J]. J. Iron Steel Res. Int., 2014, 21: 685
[12] Guo X N, Shen Y F, Zhou Y Z, et al.Effect of a single high current density electropulsing on the mechanical properties of H62[J]. Chin. J. Mater. Res., 1999, 13: 73(郭晓楠, 沈以赴, 周亦冑等. 高密度单脉冲电流对H62铜带力学性能的影响[J]. 材料研究学报, 1999, 13: 73)
[13] Lu W J, Qin R S.Stability of martensite with pulsed electric current in dual-phase steels[J]. Mater. Sci. Eng., 2016, A677: 252
[14] Kasatkin O G, Vinokur B B, Pilyushenko V L.Calculation models for determining the critical points of steel[J]. Met. Sci. Heat Treat., 1984, 26: 27
[15] Morito S, Tanaka H, Konishi R, et al.The morphology and crystallography of lath martensite in Fe-C alloys[J]. Acta Mater., 2003, 51: 1789
[16] Jiang B Y, Guan L, Tang G Y, et al.Improved mechanical properties of Mg-9Al-1Zn by the combination of aging, cold-rolling and electropulsing treatment[J]. J. Alloys Compd., 2015, 626: 297
[17] Lu W J, Qin R S.Effects of electropulsing on the microstructure evolution of 316L stainless steel[J]. Adv. Mater. Res., 2014, 992: 223
[18] Morsdorf L, Jeannin O, Barbier D, et al.Multiple mechanisms of lath martensite plasticity[J]. Acta Mater., 2016, 121: 202
[19] Yang Z Y, Chen J Y, Su J, et al.TEM study on relative orientation between adjacent martensite laths[J]. Trans. Mater. Heat Treat., 2004, 25: 35(杨卓越, 陈嘉砚, 苏杰等. 相邻板条马氏体间位向关系的TEM研究[J]. 材料热处理学报, 2004, 25: 35)
[20] Wang J J, Van Der Zwaag S. Stabilization mechanisms of retained austenite in transformation-induced plasticity steel[J]. Metall. Mater. Trans., 2001, 32A: 1527
[21] Jimenez-Melero E, Van Dijk N H, Zhao L, et al. Characterization of individual retained austenite grains and their stability in low-alloyed TRIP steels[J]. Acta Mater., 2007, 55: 6713
[22] He F, Sun X J, Liu Q Y, et al.Microstructure and stability of retained austenite in a high Al-containing TRIP steel[J]. Iron Steel, 2009, 44(12): 87(何方, 孙新军, 刘清友等. 高铝TRIP钢的微观组织与残余奥氏体稳定性研究[J]. 钢铁, 2009, 44(12): 87)
[23] Lin H Q, Zhao Y G, Zhao Y G, er al. Numerical simulation of temperature and thermal stress fields in cast-hot-working-die steel under high density electropulsing[J]. ISIJ Int., 2008, 48: 971
[24] Nakada N, Syarif J, Tsuchiyama T, et al.Improvement of strength-ductility balance by copper addition in 9%Ni steels[J]. Mater. Sci. Eng., 2004, A374: 137
[25] Sinclair C W, Poole W J, Bréchet Y.A model for the grain size dependent work hardening of copper[J]. Scr. Mater., 2006, 55: 739
[26] Chiang J, Lawrence B, Boyd J D, et al.Effect of microstructure on retained austenite stability and work hardening of TRIP steels[J]. Mater. Sci. Eng., 2011, A528: 4516
[27] Choi K S, Liu W N, Sun X, et al.Microstructure-based constitutive modeling of TRIP steel: Prediction of ductility and failure modes under different loading conditions[J]. Acta Mater., 2009, 57: 2592
[1] 田亚强,田耕,郑小平,陈连生,徐勇,张士宏. 淬火配分贝氏体钢不同位置残余奥氏体C、Mn元素表征及其稳定性[J]. 金属学报, 2019, 55(3): 332-340.
[2] 邵成伟, 惠卫军, 张永健, 赵晓丽, 翁宇庆. 一种新型高强度高塑性冷轧中锰钢的组织和力学性能[J]. 金属学报, 2019, 55(2): 191-201.
[3] 杨继兰, 蒋元凯, 顾剑锋, 郭正洪, 陈海龑. 奥氏体化温度对中碳淬火-配分钢干滑动摩擦磨损性能的影响[J]. 金属学报, 2018, 54(1): 21-30.
[4] 黄龙,邓想涛,刘佳,王昭东. 0.12C-3.0Mn低碳中锰钢中残余奥氏体稳定性与低温韧性的关系[J]. 金属学报, 2017, 53(3): 316-324.
[5] 桂晓露,张宝祥,高古辉,赵平,白秉哲,翁宇庆. Q-P-T处理贝氏体/马氏体复相高强钢疲劳断裂特性研究*[J]. 金属学报, 2016, 52(9): 1036-1044.
[6] 谢振家,尚成嘉,周文浩,吴彬彬. 低合金多相钢中残余奥氏体对塑性和韧性的影响*[J]. 金属学报, 2016, 52(2): 224-232.
[7] 李小琳, 王昭东. 一步Q&P工艺对双马氏体钢微观组织与力学性能的影响*[J]. 金属学报, 2015, 51(5): 537-544.
[8] 陈连生, 张健杨, 田亚强, 宋进英, 徐勇, 张士宏. 预先Mn配分处理对Q&P钢中C配分及残余奥氏体的影响*[J]. 金属学报, 2015, 51(5): 527-536.
[9] 周文浩, 谢振家, 郭晖, 尚成嘉. 700 MPa级高塑低碳低合金钢的多相组织调控及性能[J]. 金属学报, 2015, 51(4): 407-416.
[10] 巨彪, 武会宾, 唐荻, 潘学福. 微观组织演变对超高强耐磨钢板力学性能的影响[J]. 金属学报, 2014, 50(9): 1055-1062.
[11] 田亚强, 张宏军, 陈连生, 宋进英, 徐勇, 张士宏. 低碳高强钢合金元素配分行为对残余奥氏体和力学性能的影响[J]. 金属学报, 2014, 50(5): 531-539.
[12] 骆宗安, 刘纪源, 冯莹莹, 彭文. 超快速连续退火对低Si系Nb-Ti微合金化TRIP钢组织和力学性能的影响*[J]. 金属学报, 2014, 50(5): 515-523.
[13] 王晓姣, 沈琴, 严菊杰, 邱涛, 汪波, 李慧, 刘文庆. 沉淀强化钢中两相区NiAl相和富Cu相的析出特点[J]. 金属学报, 2014, 50(11): 1305-1310.
[14] 赵征志, 佟婷婷, 赵爱民, 何青, 董瑞, 赵复庆. 1300 MPa级0.14C-2.72Mn-1.3Si钢的显微组织和力学性能及加工硬化行为[J]. 金属学报, 2014, 50(10): 1153-1162.
[15] 李永奎, 陈俊丹, 陆善平. 42CrMo钢车轮锻件在淬火过程中的残余应力研究*[J]. 金属学报, 2014, 50(1): 121-128.