Please wait a minute...
金属学报  2018, Vol. 54 Issue (10): 1428-1434    DOI: 10.11900/0412.1961.2017.00539
  本期目录 | 过刊浏览 |
电磁场对镍基单晶高温合金组织的影响
刘承林, 苏海军(), 张军, 黄太文, 刘林, 傅恒志
西北工业大学凝固技术国家重点实验室 西安 710072
Effect of Electromagnetic Field on Microstructure ofNi-Based Single Crystal Superalloys
Chenglin LIU, Haijun SU(), Jun ZHANG, Taiwen HUANG, Lin LIU, Hengzhi FU
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
引用本文:

刘承林, 苏海军, 张军, 黄太文, 刘林, 傅恒志. 电磁场对镍基单晶高温合金组织的影响[J]. 金属学报, 2018, 54(10): 1428-1434.
Chenglin LIU, Haijun SU, Jun ZHANG, Taiwen HUANG, Lin LIU, Hengzhi FU. Effect of Electromagnetic Field on Microstructure ofNi-Based Single Crystal Superalloys[J]. Acta Metall Sin, 2018, 54(10): 1428-1434.

全文: PDF(6616 KB)   HTML
摘要: 

利用定向凝固技术,通过改变石墨套厚度获得不同强度的磁场,研究了通电感应线圈产生的磁场对DD90单晶高温合金凝固组织的影响规律,同时结合Ansys有限元分析对合金熔体内磁场、流场分布进行了模拟。结果表明:当石墨套厚度为10~30 mm时,单晶性保持完好;随石墨套厚度的增加一次枝晶间距变大,二次枝晶间距变化规律与之相反,铸态组织析出相γ′的尺寸、共晶组织含量明显增加,元素偏析增大。合金熔体内磁场、流场的Ansys有限元模拟表明,随石墨套厚度的增加,熔体内磁场强度、流速均逐渐减弱。在此基础上,从磁场作用下热电磁对流和熔体流动的角度对结果进行了分析和讨论。

关键词 单晶高温合金磁场流场热电磁对流    
Abstract

With the increase of the alloying degree and structural complexity as well as larger size in Ni-based superalloy blades, it is essentially important to suppress the solidification defects. When the electromagnetic field is introduced into solidification process, the solidification properties of alloy can be modified without changing the alloy composition, which can well eliminate the casting defects, such as the composition segregation, and optimize the solidification microstructure and improve properties. The effect of induction coil magnetic field on solidification structure of DD90 single crystal superalloy is studied by changing the thickness of graphite sleeve. The distribution of magnetic field and flow field in alloy melt are analyzed by Ansys finite element analysis (FEM). The results show that when the thickness of the graphite sleeve is 10~30 mm, the monocrystalline remains intact and the primary dendrite arm spacing increases with increasing the thickness, while the second dendrites are the opposite rule. Moreover, the as-cast microstructures of γ′ phase size, eutectic structure and content increase significantly, and the element segregation increases simultaneously with increasing the graphite sleeve thickness. The Ansys FEM shows that the magnetic field and flow velocity in the melt decrease with the increase of the thickness of graphite sleeve. Based on the thermoelectric magnetic convection induced by the magnetic field during solidification and the effect of the convection on the microstructure, the above phenomenon is analyzed and discussed.

Key wordssingle crystal superalloy    magnetic field    flow field    thermoelectric magnetic convection
收稿日期: 2017-12-15     
ZTFLH:  TG146.1  
基金资助:国家自然科学基金项目Nos.51690163和51331005
作者简介:

作者简介 刘承林,男,1993年生,硕士生

图1  有限元模型
Material Resistivity Permeability Conductivity
Ωm Hm-1 Ω-1m-1
DD90 alloy 1.25×10-6 600 1450000
Graphite sleeve - 0.98 3000
Coil 1.75×10-8 1 -
Vacuum - 1 -
表1  模拟所需的物性参数
图2  不同石墨套厚度(D)下DD90合金的横截面和纵截面OM像
图3  一次枝晶间距和二次枝晶间距与石墨套厚度的关系
图4  不同石墨套厚度下DD90合金枝晶干析出相γ′的SEM像
图5  不同石墨套厚度下DD90合金共晶组织的SEM像
图6  不同石墨套厚度下DD90合金中元素的偏析系数
图7  不同石墨套厚度下DD90合金熔体内磁场的分布
图8  不同石墨套厚度下DD90合金熔体内流场的分布
图9  Seebeck效应和枝晶间的热电磁对流
[1] Wang X G, Li J R, Yu J.Tensile anisotropy of single crystal superalloy DD9[J]. Acta Metall. Sin., 2015, 51: 1253(王效光, 李嘉荣, 喻健. DD9单晶高温合金拉伸性能各向异性[J]. 金属学报, 2015, 51: 1253)
[2] Jin T, Zhou Y Z, Wang X G, et al.Research process on microstructural stability and mechanical behavior of advanced Ni-based single crystal superalloys[J]. Acta Metall. Sin., 2015, 51: 1153(金涛, 周亦胄, 王新广等. 先进镍基单晶高温合金组织稳定性及力学行为的研究进展[J]. 金属学报, 2015, 51: 1153)
[3] Sun X F, Jin T, Zhou Y Z, et al.Research progress of Nickel-base single crystal superalloys[J]. Mater. China, 2012, 31(12): 1(孙晓峰, 金涛, 周亦胄等. 镍基单晶高温合金研究进展[J]. 中国材料进展, 2012, 31(12): 1)
[4] Zhang J, Huang T W, Liu L, et al.Advances in solidification characteristics and typical casting defects in Nickel-based single-crystal superalloys[J]. Acta Metall. Sin., 2015, 51: 1163(张军, 黄太文, 刘林等. 单晶高温合金凝固特性与典型凝固缺陷研究[J]. 金属学报, 2015, 51: 1163)
[5] Wang Y M, Li S M, Zhong H, et al.Evaluation of the uniform distribution of dendritic microstructure in directionally solidified single-crystal DD6 superalloy[J]. Acta Metall. Sin., 2015, 51: 1038(王玉敏, 李双明, 钟宏等. 定向凝固DD6单晶高温合金枝晶组织均匀性研究[J]. 金属学报, 2015, 51: 1038)
[6] Lehmann P, Moreau R, Camel D, et al.A simple analysis of the effect of convection on the structure of the mushy zone in the case of horizontal bridgman solidification. Comparison with experimental results[J]. J. Cryst. Growth, 1998, 183: 690
[7] Zhang Y D, Esling C, Gong M L, et al.Microstructural features induced by a high magnetic field in a hypereutectoid steel during austenitic decomposition[J]. Scr. Mater., 2006, 54: 1897
[8] Matthiesen D H, Wargo M J, Motakef S, et al.Dopant segregation during vertical Bridgman-Stockbarger growth with melt stabilization by strong axial magnetic fields[J]. J. Cryst. Growth, 1987, 85: 557
[9] Tewari S N, Shah R, Song H.Effect of magnetic field on the microstructure and macrosegregation in directionally solidified Pb-Sn alloys[J]. Metall. Mater. Trans., 1994, 25A: 1535
[10] Robertson Jr.G D, O'Connor D J. Magnetic field effects on float-zone Si crystal growth: II. Strong transverse fields[J]. J. Cryst. Growth, 1986, 76: 100
[11] Li Y J, Teng Y F, Feng X H, et al.Effects of pulsed magnetic field on microsegregation of solute elements in a Ni-based single crystal superalloy[J]. J. Mater. Sci. Technol., 2017, 33: 105
[12] Xuan W D, Ren Z M, Li C J.Effect of a high magnetic field on microstructures of Ni-based superalloy during directional solidification[J]. J. Alloys Compd., 2015, 620: 10
[13] Zi B T, Ba Q X, Cui J Z, et al.Study on axial changes of as-cast structures of Al-alloy sample treated by the novel SPMF technique[J]. Scr. Mater., 2000, 43: 377
[14] Trindade L B, Vilela A C F, Filho A F F, et al. Numerical model of electromagnetic stirring for continuous casting billets[J]. IEEE Trans. Magn., 2011, 38: 3658
[15] Wang H F, Su H J, Zhang J, et al.Influence of melt superheating treatment temperature on solute distribution behavior of a new Ni-based single crystal superalloys[J]. Acta Metall. Sin., 2016, 52: 419(王海锋, 苏海军, 张军等. 熔体超温处理温度对新型镍基单晶高温合金溶质分配行为的影响[J]. 金属学报, 2016, 52: 419)
[16] Zhao Y S, Zhang J, Luo Y S, et al.Effects of Hf on high temperature low stress rupture properties of a second generation Ni-based single crystal superalloy DD11[J]. Acta Metall. Sin., 2015, 51: 1261(赵云松, 张剑, 骆宇时等. Hf对第二代镍基单晶高温合金DD11高温低应力持久性能的影响[J]. 金属学报, 2015, 51: 1261)
[17] Li X, Gagnoud A, Wang J, et al.Effect of a high magnetic field on the microstructures in directionally solidified Zn-Cu peritectic alloys[J]. Acta Mater., 2014, 73: 83
[18] Xuan W D, Liu H, Li C J, et al.Effect of a high magnetic field on microstructures of Ni-based single crystal superalloy during seed melt-back[J]. Metall. Mater. Trans., 2016, 47B: 828
[19] Li X, Fautrelle Y, Ren Z M.Influence of thermoelectric effects on the solid-liquid interface shape and cellular morphology in the mushy zone during the directional solidification of Al-Cu alloys under a magnetic field[J]. Acta Mater., 2007, 55: 3803
[20] Li X, Ren Z M, Wang J, et al.Influence of a weak static magnetic field on the primary dendrite arm spacing of a directionally solidified Ni-based superalloy[J]. Mater. Lett., 2012, 67: 205
[21] Lehmann P, Moreau R, Camel D, et al.A simple analysis of the effect of convection on the structure of the mushy zone in the case of horizontal Bridgman solidification. Comparison with experimental results[J]. J. Cryst. Growth, 1998, 183: 690
[22] Zhang Y J, Huang B, Li J G.Microstructural evolution with a wide range of solidification cooling rates in a Ni-based superalloy[J]. Metall. Mater. Trans., 2013, 44A: 1641
[23] Campanella T, Charbon C, Rappaz M.Influence of permeability on the grain refinement induced by forced convection in copper-base alloys[J]. Scr. Mater., 2003, 49: 1029
[24] Turchin A N, Eskin D G, Katgerman L. Effect of melt flow on macro-and microstructure evolution during solidification of an Al-4.5%Cu alloy [J]. Mater. Sci. Eng., 2005, A413-414: 98
[25] Xuan W D, Lan J, Liu H, et al.Effects of a high magnetic field on the microstructure of Ni-based single-crystal superalloys during directional solidification[J]. Metall. Mater. Trans., 2017, 48A: 3804
[1] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[2] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] 赵鹏, 谢光, 段慧超, 张健, 杜奎. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为[J]. 金属学报, 2023, 59(9): 1221-1229.
[4] 李嘉荣, 董建民, 韩梅, 刘世忠. 吹砂对DD6单晶高温合金表面完整性和高周疲劳强度的影响[J]. 金属学报, 2023, 59(9): 1201-1208.
[5] 王迪, 贺莉丽, 王栋, 王莉, 张思倩, 董加胜, 陈立佳, 张健. Pt-Al涂层对DD413合金高温拉伸性能的影响[J]. 金属学报, 2023, 59(3): 424-434.
[6] 张子轩, 于金江, 刘金来. 镍基单晶高温合金DD432的持久性能各向异性[J]. 金属学报, 2023, 59(12): 1559-1567.
[7] 苏震奇, 张丛江, 袁笑坦, 胡兴金, 芦可可, 任维丽, 丁彪, 郑天祥, 沈喆, 钟云波, 王晖, 王秋良. 纵向静磁场下单晶高温合金定向凝固籽晶回熔界面杂晶的形成与演化[J]. 金属学报, 2023, 59(12): 1568-1580.
[8] 原家华, 张秋红, 王金亮, 王灵禺, 王晨充, 徐伟. 磁场与晶粒尺寸协同作用对马氏体形核及变体选择的影响[J]. 金属学报, 2022, 58(12): 1570-1580.
[9] 李文文, 陈波, 熊华平, 尚泳来, 毛唯, 程耀永. 第二代单晶高温合金DD6高性能钎焊接头的组织及力学性能[J]. 金属学报, 2021, 57(8): 959-966.
[10] 王迪, 王栋, 谢光, 王莉, 董加胜, 陈立佳. Pt-Al涂层对一种镍基单晶高温合金抗热腐蚀行为的影响[J]. 金属学报, 2021, 57(6): 780-790.
[11] 徐静辉, 李龙飞, 刘心刚, 李辉, 冯强. 热力耦合对一种第四代镍基单晶高温合金1100℃蠕变组织演变的影响[J]. 金属学报, 2021, 57(2): 205-214.
[12] 马德新, 赵运兴, 徐维台, 皮立波, 李重行. 高温合金单晶铸件中共晶组织分布的表面效应[J]. 金属学报, 2021, 57(12): 1539-1548.
[13] 张少华, 谢光, 董加胜, 楼琅洪. 单晶高温合金共晶溶解行为的差热分析[J]. 金属学报, 2021, 57(12): 1559-1566.
[14] 栾晓圣, 梁志强, 赵文祥, 石贵红, 李宏伟, 刘心藜, 祝国荣, 王西彬. 45CrNiMoVA钢脉冲磁处理的强化机理[J]. 金属学报, 2021, 57(10): 1272-1280.
[15] 唐海燕, 刘锦文, 王凯民, 肖红, 李爱武, 张家泉. 连铸中间包加热技术及其冶金功能研究进展[J]. 金属学报, 2021, 57(10): 1229-1245.