Please wait a minute...
金属学报  2018, Vol. 54 Issue (8): 1165-1170    DOI: 10.11900/0412.1961.2017.00504
  本期目录 | 过刊浏览 |
过冷Co75B25合金的凝固
李芸1,2, 刘连杰1,2, 李新明1,2, 李金富1,2()
1 上海交通大学材料科学与工程学院金属基复合材料国家重点实验室 上海 200240
2 上海交通大学材料科学与工程学院上海市激光制造与材料改性重点实验室 上海 200240
Solidification of Undercooled Co75B25 Alloy
Yun LI1,2, Lianjie LIU1,2, Xinming LI1,2, Jinfu LI1,2()
1 State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
2 Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
全文: PDF(4185 KB)   HTML
摘要: 

利用熔融玻璃包覆加循环过热技术将Co75B25包晶合金熔体过冷至液相线下不同温度,通过凝固组织观察结合冷却曲线分析,确立了其凝固路径。结果表明:所有过冷度凝固后的试样中均只有α-Co和Co2B相,Co2B相与残余液相反应形成Co3B相的包晶转变被完全抑制,且在344 K实验所得最大过冷度下Co3B相也不能作为初生相析出;即使降低冷速至5 K/min,合金在小过冷度下凝固时也没有发生包晶反应。

关键词 Co75B25合金过冷非平衡凝固相选择    
Abstract

The method to deeply undercool alloy melts far below the liquidus temperature by eliminating heterogeneous nucleation sites inside is frequently used in studying non-equilibrium solidification behavior, preparing quasi-crystal, amorphous alloy and other metastable materials. Previous work on the solidification of Co-(18.5~20.7)%B (atomic fraction) alloys indicated that metastable Co23B6 phase instead of stable Co3B phase was formed as the primary phase from the melts undercooled by larger than 60 K. To know whether Co23B6 phase can still primarily form from the deeply undercooled melt of Co75B25, the nominal composition of Co3B phase, the Co75B25 alloy melt was undercooled to different degrees using the glass fluxing technique, and the solidification path was identified by analyzing the microstructures and cooling curves of the samples. There was nothing other than α-Co and Co2B phases to form during solidification, indicating that not only the peritectic reaction of L (liquid) and Co2B into Co3B, predicted by the Co-B phase diagram, but also the formation of Co3B as primary phase at large undercooling were inhibited. The peritectic reaction did not occur even though the solidification was designed to occur at a very small undercooling and a cooling rate decreased to 5 K/min.

Key wordsCo75B25 alloy    undercooling    non-equilibrium solidification    phase selection
收稿日期: 2017-12-01      出版日期: 2018-03-16
ZTFLH:  TG111.4  
基金资助:国家自然科学基金项目Nos.51471108和51620105012
作者简介:

作者简介 李 芸,女,1992年生,硕士

引用本文:

李芸, 刘连杰, 李新明, 李金富. 过冷Co75B25合金的凝固[J]. 金属学报, 2018, 54(8): 1165-1170.
Yun LI, Lianjie LIU, Xinming LI, Jinfu LI. Solidification of Undercooled Co75B25 Alloy. Acta Metall Sin, 2018, 54(8): 1165-1170.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2017.00504      或      http://www.ams.org.cn/CN/Y2018/V54/I8/1165

图1  在典型过冷度凝固后Co75B25合金的XRD谱
图2  Co75B25合金在典型过冷度下凝固时的温度再辉曲线
图3  Co75B25合金在典型过冷度凝固后的显微组织
图4  过冷度为5 K的Co75B25合金以5 K/min冷却速率凝固后的XRD谱和显微组织
图5  Co75B25合金循环加热冷却的DSC曲线
图6  Co-B在富Co端的局部相图,虚线所示为L→α-Co+Co2B亚共晶转变[22]
[1] Kattamis T Z, Flemings M C.Structure of undercooled Ni-Sn eutectic[J]. Metall. Mater. Trans., 1970, 1: 1449
[2] Li J F, Liu Y C, Lu Y L, et al.Structural evolution of undercooled Ni-Cu alloys[J]. J. Cryst. Growth, 1998, 192: 462
[3] Li J F, Zhou Y H, Yang G C.Solidification behavior of undercooled Cu70Ni30 alloy melt[J]. Mater. Sci. Eng., 2000, A277: 161
[4] Battezzati L, Antonione C, Baricco M.Undercooling of Ni-B and Fe-B alloys and their metastable phase diagrams[J]. J. Alloys Compd., 1997, 247: 164
[5] Xu J F, Liu F, Dang B.Phase selection in undercooled Ni-3.3 Wt Pct B alloy melt[J]. Metall. Mater. Trans., 2013, 44A: 1401
[6] Liu F, Xu J F, Zhang D, et al.Solidification of highly undercooled hypereutectic Ni-Ni3B alloy melt[J]. Metall. Mater. Trans., 2014, 45A: 4810
[7] Yang C L, Liu F, Yang G C, et al.Microstructure and phase selection in bulk undercooled Fe-B eutectic alloys[J]. J. Alloys Compd., 2007, 441: 101
[8] Yang C L, Liu F, Yang G C, et al.Structure evolution upon non-equilibrium solidification of bulk undercooled Fe-B system[J]. J. Cryst. Growth, 2009, 311: 404
[9] Yang C L, Yang G C, Liu F, et al.Metastable phase formation in eutectic solidification of highly undercooled Fe83B17 alloy melt[J]. Physica, 2006, 373B: 136
[10] Chen L F, Chen X C.A study of deep undercooling for Al-Cu-Fe icosahedral quasicrystal[J]. Acta Phys. Sin., 1996, 45: 170(陈立凡, 陈熙琛. Al-Cu-Fe二十面体准晶的深过冷研究[J]. 物理学报, 1996, 45: 170)
[11] Fan J F, Liu X B, Xie H, et al.Phase selection in undercooled melt of Al72Ni12Co16 quasicrystal-forming alloy[J]. Chin. J. Nonferrous Met., 2003, 13: 1087(樊建锋, 刘新宝, 谢辉等. 深过冷Al72Ni12Co16合金熔体中的相选择[J]. 中国有色金属学报, 2003, 13: 1087)
[12] Drehman A J, Greer A L, Turnbull D.Bulk formation of a metallic glass: Pd40Ni40P20[J]. Appl. Phys. Lett., 1982, 41: 716
[13] Nishiyama N, Inoue A.Supercooling investigation and critical cooling rate for glass formation in Pd-Cu-Ni-P alloy[J]. Acta Mater., 1999, 47: 1487
[14] Liu N, Yang G C, Liu F, et al.Peritectic solidification of undercooled Fe-Co alloy[J]. Mater. Rev., 2011, 25(8): 57(刘宁, 杨根仓, 刘峰等. 过冷Fe-Co合金的包晶凝固[J]. 材料导报, 2011, 25(8): 57)
[15] Kerr H W, Kurz W.Solidification of peritectic alloys[J]. Int. Mater. Rev., 1996, 41: 129
[16] Dobler S, Lo T S, Plapp M, et al.Peritectic coupled growth[J]. Acta Mater., 2004, 52: 2795
[17] Kohler F, Germond L, Wagnière J D, et al.Peritectic solidification of Cu-Sn alloys: Microstructural competition at low speed[J]. Acta Mater., 2009, 57: 56
[18] Xu J F, Wei B B.Electrical property of rapidly solidified Co-Cu peritectic alloys[J]. Acta Phys. Sin., 2005, 54: 3444(徐锦锋, 魏炳波. 快速凝固Co-Cu包晶合金的电学性能[J]. 物理学报, 2005, 54: 3444)
[19] Ba F H, Shen N F, Yu G.Peritectic reaction and solidification path in Ni-Al alloy during rapidly solidification process[J]. Chin. J. Nonferrous Met., 2003, 13: 335(巴发海, 沈宁福, 虞钢. Ni25Al75合金快速凝固过程中的包晶反应与凝固进程[J]. 中国有色金属学报, 2003, 13: 335)
[20] Yang W, Zhang Y L, Yu H, et al.Effects of cooling rate on primary phase and peritectic transformation in Cu70Zr30 alloy[J]. Chin. J. Nonferrous Met., 2014, 24: 2295(杨伟, 张燕龙, 余欢等. 冷却速率对Cu70Zr30合金初生相及包晶转变的影响[J]. 中国有色金属学报, 2014, 24: 2295)
[21] Wei X X.Study on the rapid solidification microstructure of deeply undercooled eutectic alloy melts [D]. Shanghai: Shanghai Jiao Tong University, 2016(韦修勋. 共晶合金深过冷快速凝固组织形成的研究 [D]. 上海: 上海交通大学, 2016)
[22] Liao P K, Spear K E.Binary Alloy Phase Diagrams[M]. 2nd Ed., Materials Park, OH: ASM International, 1990: 452
[23] Chizhevskii N P, Shmelev B A.The system Co-B[J]. Trudy Moskovskogo Inst. Stali Im. I. V. Stalina, 1940, 17: 3
[24] Wei X X, Xu W, Kang J L, et al.Metastable Co23B6 phase solidified from deeply undercooled Co79.3B20.7 alloy melt[J]. J. Mater. Sci., 2016, 51: 6436
[25] St John D H, Hogan L M. A simple prediction of the rate of the peritectic transformation[J]. Acta Metall., 1987, 35: 171
[26] Han X J, Wang N, Wei B B.Rapid solidification of undercooled Pb-Bi hypoeutectic and peritectic alloys[J]. Acta Metall. Sin., 2000, 36: 573(韩秀君, 王楠, 魏炳波. Pb-Bi亚共晶和包晶合金的快速凝固[J]. 金属学报, 2000, 36: 573)
[27] Koster W, Mulfinger U W.The binary systems of Co with B, As, Zr, Nb, and Ta[J]. Z. Metallkd., 1938, 30: 348
[28] Rundqvist S.Two borides with the cementite structure[J]. Nature, 1958, 181: 259
[29] Rundqvist S, Goa J, Colldahl H, et al.Crystal structure of Ni3B and Co3B[J]. Acta Chem. Scand., 1958, 12: 658
[30] Kolomytsev P T.The phase composition of alloys of the cobalt-boron[J]. Dokl. Akad. Nauk SSSR+, 1959, 124: 1247
[31] Kolomytsev P T.Equilibrium diagrams of the system Co-Co2B[J]. Dokl. Akad. Nauk SSSR+, 1960, 130: 767
[32] Sch?bel J D, Stadelmaier H H.The cobalt-boron two-component system[J]. Z. Metallkd., 1966, 57: 323
[33] Omori S, Hashimoto Y.Eutectoid decomposition of Co3B and phase diagram of the system Co-Co2B[J]. Trans. Jpn. Inst. Met., 1976, 17: 571
[1] 胡宽辉, 毛新平, 周桂峰, 刘静, 王志奋. Si和Mn含量对超高强度热成形钢组织和性能的影响[J]. 金属学报, 2018, 54(8): 1105-1112.
[2] 樊丹丹, 许军锋, 钟亚男, 坚增运. 过热温度和冷却速率对过冷Ti熔体凝固过程的影响[J]. 金属学报, 2018, 54(6): 844-850.
[3] 翟斌, 周凯, 吕鹏, 王海鹏. 自由落体条件下Ti-6Al-4V合金微液滴的快速凝固研究[J]. 金属学报, 2018, 54(5): 824-830.
[4] 李金富, 周尧和. 液态金属深过冷快速凝固过程中初生固相的重熔[J]. 金属学报, 2018, 54(5): 627-636.
[5] 刘峰, 张旭, 张玉兵. 非平衡凝固与固态相变的一体化研究[J]. 金属学报, 2018, 54(5): 701-716.
[6] 坚增运, 徐涛, 许军锋, 朱满, 常芳娥. 熔体-结晶相固-液界面能的研究进展[J]. 金属学报, 2018, 54(5): 766-772.
[7] 朱姜蕾, 王庆, 王海鹏. 深过冷液态金属Cu的热物理性质和原子分布[J]. 金属学报, 2017, 53(8): 1018-1024.
[8] 严军辉,坚增运,朱满,常芳娥,许军锋. 深过冷Al-70%Si合金的凝固特性与微观组织*[J]. 金属学报, 2016, 52(8): 931-937.
[9] 陈正, 杨亚楠, 陈强, 许军峰, 唐跃跃, 刘峰. 过冷Fe82B17Si1合金的再辉效应模拟及组织演化*[J]. 金属学报, 2014, 50(7): 795-801.
[10] 文强, 坚增运, 朱满, 常芳娥, 党博. RE对过共晶Al-80%Si合金凝固特性的影响*[J]. 金属学报, 2014, 50(5): 610-618.
[11] 王灵水,沈军,商昭,王雷,傅恒志. 对流条件下定向凝固包晶合金的相和微观组织选择[J]. 金属学报, 2013, 49(7): 822-830.
[12] 郭雄,林鑫,汪志太,曹永青,彭东剑,黄卫东. 深过冷Ni-30Sn合金凝固组织演化及反常共晶的形成机制[J]. 金属学报, 2013, 29(4): 475-482.
[13] 胡锐,柳翊,张铁邦,寇宏超,李金山. TiAl基合金非平衡凝固过程中的相选择及凝固特征[J]. 金属学报, 2013, 49(11): 1295-1302.
[14] 王斌,刘振宇,周晓光,王国栋. 超快速冷却条件下亚共析钢中纳米级渗碳体析出的相变驱动力计算[J]. 金属学报, 2013, 49(1): 26-34.
[15] 常芳娥 赵志伟 朱满 李娜 方雯 董广志 坚增运. 深过冷Ni-21.4%Si共晶合金的凝固特性研究[J]. 金属学报, 2012, 48(7): 875-881.