Please wait a minute...
金属学报  2018, Vol. 54 Issue (5): 717-726    DOI: 10.11900/0412.1961.2017.00501
  金属材料的凝固专刊 本期目录 | 过刊浏览 |
微观孔洞和逆偏析缺陷的形成机理与耦合预测研究进展
高志明1, 介万奇1(), 刘永勤2, 罗海军1
1 西北工业大学材料学院凝固技术国家重点实验室 西安 710072
2 西安工业大学材料与化工学院 西安 710021
Formation Mechanism and Coupling Prediction of Microporosity and Inverse Segregation: A Review
Zhiming GAO1, Wanqi JIE1(), Yongqin LIU2, Haijun LUO1
1 State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
2 School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China
引用本文:

高志明, 介万奇, 刘永勤, 罗海军. 微观孔洞和逆偏析缺陷的形成机理与耦合预测研究进展[J]. 金属学报, 2018, 54(5): 717-726.
Zhiming GAO, Wanqi JIE, Yongqin LIU, Haijun LUO. Formation Mechanism and Coupling Prediction of Microporosity and Inverse Segregation: A Review[J]. Acta Metall Sin, 2018, 54(5): 717-726.

全文: PDF(4413 KB)   HTML
摘要: 

本文首先分别总结了微观孔洞和逆偏析2种凝固缺陷的形成机理及各自预测模型的发展,然后对二者的耦合预测模型发展做了概括总结,最后重点介绍了近期作者所建立的一个新的耦合预测模型。该模型首先利用气体元素在液-固-气三相中的分配规律,结合因液相在枝晶间补缩通道内流动受阻引起的局部压降,建立了一个新的微观孔洞预测模型;然后结合微观孔洞的析出对糊状区枝晶间补缩液流的影响规律,对经典的“局部溶质再分配方程”进行修正,得到一个新的逆偏析解析模型。针对以柱状枝晶方式定向凝固的Al-4.5%Cu (质量分数)合金的计算结果表明,凝固过程中微观孔洞的形成,会补偿糊状区中的凝固收缩,从而减少枝晶间的补缩液流,使糊状区枝晶间溶质富集程度减小,最终使逆偏析得到缓解。

关键词 微观孔洞逆偏析压降气体析出补缩液流溶质再分配    
Abstract

Microporosity and inverse segregation are two common casting defects mainly caused by solidification shrinkage, which are detrimental to the mechanical properties of components, especially to the fatigue performance and ductility. Numerous efforts have been put into the investigation on microporosity and inverse segregation independently. However, few work has been done to establish a theoretical model for predicting the two defects simultaneously, whereas they often interact with each other and the formation of microporosity may exert a beneficial effect on inverse segregation. In this review, the coupling models for prediction of microporosity and inverse segregation were introduced. Firstly, the mechanisms and the predicting models for the two defects were summarized separately. Microporosity is a resultant of solidification shrinkage and gas segregation. Therefore, the porosity was previously categorized into two types: shrinkage porosity and gas porosity. More recent porosity models have combined the effect of pressure drop induced by feeding, the evolution of pores radius, the decrease of gases solubility in the liquid and the gas rejection at the solid/liquid interface, which provide rather good approximation to experimental results. As for inverse segregation, it is mainly caused by the suction of interdendritic liquid which is generally rich in solute. Therefore, determination of the feeding velocity is crucial for most inverse segregation models. Then, through the analysis of the underlying interaction between microporosity and interdendritic feeding flow, the coupling methods for prediction of the two defects were reviewed. Most of the models have added porosity into the continuity equation to amend the feeding velocity and utilized the “local solute redistribution equation” to get the solute concentration profiles. A new coupling model recently proposed by the present authors, based on analyses of the redistribution of gases element as well as the alloying element, is also in this route. The result shows that for Al-4.5%Cu (mass fraction) alloy solidified in a columnar dendrites structure, the predicted fraction of microporosity is a little smaller than that of Poirier's model, and the increase of initially dissolved hydrogen in the melt will decrease the solute enrichment in the interdendritic liquid. Microporosity seems to reduce the flow needed to compensate the solidification shrinkage, thus the solute segregation gets reduced. Finally, several suggestions were proposed, including the treatment of pore radius, eutectic shrinkage and gas porosity precipitated during eutectic reaction, etc.

Key wordsmicroporosity    inverse segregation    pressure drop    gas precipitation    feeding flow    solute redistribution
收稿日期: 2017-11-27     
ZTFLH:  TG21  
基金资助:资助项目 国家自然科学基金国际(地区)合作研究项目No.51420105005
作者简介:

作者简介 高志明,男,1989年生,博士生

图1  A357合金凝固组织中的缩松与气孔
图2  Al-4.5%Cu合金凝固过程中枝晶间液相中的氢浓度变化及其溶解度变化
图3  微观孔洞形成的压力条件[11]
图4  孔洞发展的不同阶段
图5  定向凝固的Al-4.5%Cu合金柱状枝晶组织中,计算得到的糊状区各压力变化曲线(包括凝固收缩导致的压降、表面张力和气孔析出压力变化,以及合金的Scheil凝固路径)[11]
图6  利用Jie提出的微观孔洞模型[11]计算得到的不同初始H含量时的孔洞体积分数变化,以及用Poirier模型[9]计算的孔洞体积量变化
图7  垂直向上定向凝固示意图
图8  根据Mehrabian偏析模型[29]计算得到的Al-4.5%Cu合金溶质分布
图9  计算得到的不同初始H含量时,定向凝固的Al-4.5%Cu合金枝晶间补缩液流流速变化[11]
图10  定向凝固的Al-4.5%Cu合金在不同初始H含量时的枝晶间液相中溶质浓度分布[11]
[1] Pequet C, Rappaz M, Gremaud M.Modeling of microporosity, macroporosity, and pipe-shrinkage formation during the solidification of alloys using a mushy-zone refinement method: Applications to aluminum alloys[J]. Metall. Mater. Trans., 2002, 33A: 2095
[2] Campbell J.Castings[M]. 2nd Ed., Oxford: Butterworth-Heinemann, 2003: 139
[3] Zhang Y T, Chen B, Liu K, et al.Development of low segregation technology[J]. Acta. Metall. Sin., 2017, 53: 559(张玉妥, 陈波, 刘奎等. 低偏析技术的发展[J]. 金属学报, 2017, 53: 559)
[4] Talbot D E J. Effects of hydrogen in aluminium, magnesium, copper, and their alloys[J]. Int. Metall. Rev., 1975, 20: 166
[5] Stefanescu D M.Computer simulation of shrinkage related defects in metal castings—A review[J]. Int. J. Cast Met. Res., 2005, 18: 129
[6] Fuoco R, Goldenstein H, Gruzleski J.Evaluation of effect of modification induced undercooling on microporosity formation in A356 aluminum alloy[J]. AFS Trans., 1994, 102: 297
[7] Rappaz M, Drezet J M, Gremaud M.A new hot-tearing criterion[J]. Metall. Mater. Trans., 1999, 30A: 449
[8] Grandfield J F, Davidson C J, Taylor J A.Application of a new hot tearing analysis in horizontal direct-chill cast magnesium alloy AZ91 [A]. Proceedings of the Light Metals 2001[C]. Warrendale, PA: TMS, 2001
[9] Poirier D, Yeum K, Maples A L.A thermodynamic prediction for microporosity formation in aluminum-rich Al-Cu alloys[J]. Metall. Trans., 1987, 18A: 1979
[10] Kubo K, Pehlke R D.Mathematical modeling of porosity formation in solidification[J]. Metall. Trans., 1985, 16B: 359
[11] Gao Z M, Jie W Q, Liu Y Q, et al.Solidification modelling for coupling prediction of porosity and segregation[J]. Acta Mater., 2017, 127: 277
[12] Liu Y Q, Jie W Q, Gao Z M, et al.Investigation on the formation of microporosity in aluminum alloys[J]. J. Alloys Compd., 2015, 629: 221
[13] Jacobi H, Schwerdtfeger K.Dendrite morphology of steady state unidirectionally solidified steel[J]. Metall. Trans., 1976, 7A: 811
[14] Kao S T, Chang E, Lee Y W.Simplified method of porosity prediction in directionally solidified Al-4.5wt-%Cu alloy[J]. Mater. Sci. Technol., 1995, 11: 933
[15] Zhao H D, Wu C Z, Li Y Y, et al.Modeling of microporosity formation in upward vertically solidified Al-Cu casting[J]. Acta Metall. Sin., 2008, 44: 1340(赵海东, 吴朝忠, 李元元等. 垂直向上凝固Al-Cu铸件中微观孔洞形成的数值模拟[J]. 金属学报, 2008, 44: 1340)
[16] Jiang G R, Liu Y, Li Y X, et al.A model for calculating solubility of hydrogen in molten alloys[J]. Acta Metall. Sin., 2008, 44: 129(蒋光锐, 刘源, 李言祥等. 铝合金熔体中氢溶解度的计算模型[J]. 金属学报, 2008, 44: 129)
[17] Opie W R, Grant N J.Hydrogen solubility in aluminum and some aluminum alloys[J]. JOM, 1950, 2: 1237
[18] Jiang G R, Li Y X, Liu Y.Calculation of hydrogen solubility in molten alloys[J]. Trans. Nonferrous Met. Soc. China, 2011, 21: 1130
[19] Rousset P, Rappaz M, Hannart B.Modeling of inverse segregation and porosity formation in directionally solidified aluminum alloys[J]. Metall. Mater. Trans., 1995, 26A: 2349
[20] Walther W D, Adams C M, Taylor H F.Mechanism for pore formation in solidifying metals[J]. AFS Trans., 1956, 64: 658
[21] Piwonka T S, Flemings M C, Piwonka T S.Pore formation in solidification[J]. Trans. Metall. Soc. AIME, 1966, 236: 1157
[22] Darcy H.Les Fontaines Publiques de la Ville de Dijon: Exposition et Application[M]. Paris: Victor Dalmont, 1856: 1
[23] Niyama E, Uchida T, Morikawa M.A method of shrinkage prediction and its application to steel casting practice[J]. J. Jpn Foundr. Eng. Soc., 1982, 54: 507
[24] Liu C Y, Murakami K, Okamoto T, et al.Feeding to castings from a riser in a pasty state[J]. Mater. Sci. Eng., 1987, 96: 259
[25] Kato H, Cahoon J R.Inverse segregation in directionally solidified Al-Cu-Ti alloys with equiaxed grains[J]. Metall. Trans., 1985, 16A: 579
[26] Voller V R, Sundarraj S.A model of inverse segregation: The role of microporosity[J]. Int. J. Heat Mass Transfer, 1995, 38: 1009
[27] Diao Q Z, Tsai H L.Modeling of solute redistribution in the mushy zone during solidification of aluminum-copper alloys[J]. Metall. Trans., 1993, 24A: 963
[28] Sigworth G K, Wang C M.Mechanisms of porosity formation during solidification: A theoretical analysis[J]. Metall. Trans., 1993, 24B: 349
[29] Mehrabian R, Keane M, Flemings M C.Interdendritic fluid flow and macrosegregation; Influence of gravity[J]. Metall. Mater. Trans., 1970, 1B: 1209
[30] Poirier D R.Permeability for flow of interdendritic liquid in columnar-dendritic alloys[J]. Metall. Trans., 1987, 18B: 245
[31] Lee P D, Hunt J D.Measuring the nucleation of hydrogen porosity during the solidification of aluminium-copper alloys[J]. Scr. Mater., 1997, 36: 399
[32] Lee P D, Hunt J D.Hydrogen porosity in directional solidified aluminium-copper alloys: In situ observation[J]. Acta Mater., 1997, 45: 4155
[33] Lee P D, Atwood R C, Dashwood R J, et al.Modeling of porosity formation in direct chill cast aluminum-magnesium alloys[J]. Mater. Sci. Eng., 2002, A328: 213
[34] Lee P D, Hunt J D.Hydrogen porosity in directionally solidified aluminium-copper alloys: A mathematical model[J]. Acta Mater., 2001, 49: 1383
[35] Jie W Q.Solute redistribution and segregation in solidification process[J]. Bull. Natl. Nat. Sci. Foundation of China, 1999, (6): 343(介万奇. 合金凝固过程中的溶质再分配与成分偏析[J]. 中国科学基金, 1999, (6): 343)
[36] Buschow C.Macrosegregation [A]. Encyclopedia of Materials: Science and Technology[M]. New York: Elsevier, 2001: 4733
[37] Beckermann C.Modelling of macrosegregation: Applications and future needs[J]. Int. Mater. Rev., 2002, 47: 243
[38] Maples A L, Poirier D R.Convection in the two-phase zone of solidifying alloys[J]. Metall. Trans., 1984, 15B: 163
[39] Youdelis W V.Inverse segregation in aluminum-copper alloys [D]. Quebeci: McGill university, 1956
[40] Flemings M C, Nereo G E.Macrosegregation: Part I[J]. Trans. Met. Soc. AIME, 1967, 239: 1449
[41] Scheil E.Beitrag zum problem der blockseigerung[J]. Metallforschung, 1947, 38(2): 69
[42] Flemings M C, Nereo G E, Mehrabian R.Macrosegregation: Part II[J]. Trans. Met. Soc. AIME, 1968, 242: 41
[43] Flemings M C, Nereo G E.Macrosegregation: Part III[J]. Trans. Met. Soc. AIME, 1968, 242: 50
[44] Chen J H, Tsai H L.Inverse segregation for a unidirectional solidification of aluminum-copper alloys[J]. Int. J. Heat Mass Transfer, 1993, 36: 3069
[45] Chiang K C, Tsai H L.Shrinkage-induced fluid flow and domain change in two-dimensional alloy solidification[J]. Int. J. Heat Mass Transfer, 1992, 35: 1763
[46] Ferreira I L, Siqueira C A, Santos C A, et al.Theoretical and experimental analysis of inverse segregation during unidirectional solidification of an Al-6.2wt.% Cu alloy[J]. Scr. Mater., 2003, 49: 339
[47] Ferreira I L, Santos C A, Garcia A, et al.Analytical, numerical, and experimental analysis of inverse macrosegregation during upward unidirectional solidification of Al-Cu alloys[J]. Metall. Mater. Trans., 2004, 35B: 285
[48] Ni J, Beckermann C.A volume-averaged two-phase model for transport phenomena during solidification[J]. Metall. Trans., 1991, 22B: 349
[49] Minakawa S, Samarasekera I V, Weinberg F.Inverse segregation[J]. Metall. Trans., 1985, 16B: 595
[50] Khalajzadeh V, Carlson K D, Backman D G, et al.A pore-centric model for combined shrinkage and gas porosity in alloy solidification[J]. Metall. Mater. Trans., 2017, 48A: 1797
[1] 万谦,赵海东,邹纯. 铝合金压铸件微观孔洞三维特征及分布的研究[J]. 金属学报, 2013, 49(3): 284-290.
[2] 韩志强 李金玺 杨文 赵海东 柳百成. 铝合金挤压铸造过程微观孔洞形成的建模与仿真[J]. 金属学报, 2011, 47(1): 7-16.
[3] 赵海东; 吴朝忠; 李元元; 大中逸雄 . 垂直向上凝固Al-Cu铸件中微观孔洞形成的数值模拟[J]. 金属学报, 2008, 44(11): 1340-1347 .