Please wait a minute...
金属学报  2018, Vol. 54 Issue (8): 1193-1203    DOI: 10.11900/0412.1961.2017.00491
  本期目录 | 过刊浏览 |
铝基非晶纳米晶复合涂层显微组织与腐蚀性能研究
梁秀兵1,2(), 范建文1, 张志彬1, 陈永雄1,2
1 陆军装甲兵学院机械产品再制造国家工程研究中心 北京 100072
2 军事科学院国防科技创新研究院 北京 100071
Microstructure and Corrosion Properties of Aluminum Base Amorphous and Nanocrystalline Composite Coating
Xiubing LIANG1,2(), Jianwen FAN1, Zhibin ZHANG1, Yongxiong CHEN1,2
1 National Engineering Research Center for Mechanical Product Remanufacturing, Academy of Armored Army Forces, Beijing 100072, China
2 Innovation Research Institute of National Defense Science and Technology, Academy of Military Sciences, Beijing 100071, China
引用本文:

梁秀兵, 范建文, 张志彬, 陈永雄. 铝基非晶纳米晶复合涂层显微组织与腐蚀性能研究[J]. 金属学报, 2018, 54(8): 1193-1203.
Xiubing LIANG, Jianwen FAN, Zhibin ZHANG, Yongxiong CHEN. Microstructure and Corrosion Properties of Aluminum Base Amorphous and Nanocrystalline Composite Coating[J]. Acta Metall Sin, 2018, 54(8): 1193-1203.

全文: PDF(9639 KB)   HTML
摘要: 

针对钢结构材料易腐蚀问题,采用高速电弧喷涂技术在45钢表面制备了含有高非晶含量的Al-Ni-Zr非晶纳米晶复合涂层,研究了复合涂层的显微组织、宏观腐蚀性能和微区腐蚀性能。利用XRD、SEM、EDS和TEM等技术手段,确定了复合涂层微观结构中灰色组织区为非晶富集区;采用扫描Kelvin探针显微镜技术(SKPM),发现复合涂层各相腐蚀的先后顺序依次为:富Al相、氧化物相、非晶相。复合涂层显微硬度高于45钢,约为364 HV0.1。EIS拟合结果显示,复合涂层电荷转移电阻为纯Al涂层和45钢的2~4倍,具有2个时间常数,低频区受扩散过程控制,主要与腐蚀产物的堆积和扩散有关;动电位极化曲线拟合结果显示,复合涂层的自腐蚀电位正于纯Al涂层和45钢,自腐蚀电流密度为1.08 μA/cm2,分别是纯Al涂层和45钢的7/100和1/3。复合涂层的腐蚀形貌显示,涂层表面无明显点蚀,富Al相区表面附着大量的NaCl晶体,为优先腐蚀区,而非晶富集区表面光滑平整;同时,涂层出现了腐蚀坑、微裂纹和点蚀富集等,主要与Cl-的侵蚀作用和涂层受到溶胀作用有关。

关键词 铝基非晶纳米晶复合涂层微区腐蚀耐蚀性钢结构表面防护    
Abstract

It is easy to corrode the steel structural materials. In view of this problem, the Al-Ni-Zr amorphous and nanocrystalline composite coating with high amorphous volume was prepared by high velocity arc spraying on the 45 steel. The microstructure, macroscopic corrosion performance and microzone corrosion performance of the composite coating was investigated. XRD, SEM with EDS and TEM were applied to confirm that the gray zone of the composite coating microstructure was the amorphous enrichment zone. It was found by the scanning Kelvin probe microscopy (SKPM) that the corrosion failure order of each phase of the composite coating was arranged in order of the aluminum rich phases, the oxidation phases and the amorphous phase. The microhardness of the composite coating was about 364 HV0.1 which was greater than that of 45 steel. The EIS fitting results showed that the charge transfer resistance of the composite coating is 2~4 times of the aluminum coating and 45 steel. It has two time constants in the spectrum. The corrosion failure behavior of the composite coating in the low frequency was controlled by the diffusion process, which was related to the accumulation and diffusion of the corrosion products. The potentiodynamic polarization curves fitting results indicated that the self-corrosion potential of the composite coating was higher than those of the aluminum coating and 45 steel. And the self-corrosion current density of the composite coating was about 1.08 μA/cm2, which was 7/100 and 1/3 of that of the aluminum coating and 45 steel, respectively. According to the corrosion morphology of the composite coating, there was no obvious pitting. A large number of NaCl crystals were attached to the surface of the aluminum rich phase region as the preferred corrosion zone. But the surface of the amorphous enrichment zone was smooth. At the same time, the corrosion pits, micro-cracks and pitting enrichment occurred on the surface of the composite coating, which was mainly related to the effects of Cl- erosion and swelling.

Key wordsaluminum base amorphous and nanocrystalline composite coating    microzone corrosion    corrosion resistance    surface protection for steel structure
收稿日期: 2017-11-27     
ZTFLH:  TG174.4  
基金资助:国家自然科学基金项目Nos.51505500和51375492
作者简介:

作者简介 梁秀兵,男,1974年生,研究员,博士

图1  铝基非晶纳米晶Al-Ni-Zr复合涂层和纯Al涂层的XRD谱
图2  Al-Ni-Zr复合涂层和纯Al涂层横截面的SEM像
图3  Al-Ni-Zr复合涂层横截面形貌的高倍SEM像
Zone Al Ni Zr O
I 16.28 21.75 25.84 36.13
II 68.60 19.55 6.01 5.84
III 74.67 15.76 5.81 3.76
IV 86.47 7.17 2.25 4.11
表1  图3中Al-Ni-Zr复合涂层的SEM-EDS分析
图4  Al-Ni-Zr复合涂层TEM明场像及选区电子衍射(SAED)花样
Zone Al Ni Zr
I 74.30 18.58 7.12
II 88.79 8.48 2.73
III 100.00 - -
表2  图4中Al-Ni-Zr复合涂层的TEM-EDS分析
图5  Al-Ni-Zr复合涂层截面方向显微硬度
图6  Al-Ni-Zr复合涂层、纯Al涂层和45钢在3.5%NaCl溶液中的动电位极化曲线
Sample Ecorr / V icorr / (μAcm-2) Rp / (kΩcm-2) βA / mV βC / mV
Al-Ni-Zr coating -0.645 1.08 24.51 108.0 140
Al coating -1.297 15.46 3.99 1167.5 162
45 steel -0.712 3.72 7.62 76.1 458
表3  动电位极化曲线拟合结果
图7  Al-Ni-Zr复合涂层、纯Al涂层和45钢在3.5%NaCl溶液中的Nyquist曲线
图8  45钢、纯Al涂层、Al-Ni-Zr复合涂层和Al-Ni-Zr复合涂层超声清洗后的腐蚀形貌
图9  Al-Ni-Zr复合涂层背散射电子像及元素分布图
图10  Al-Ni-Zr复合涂层表面电势分布图
图11  Al-Ni-Zr复合涂层腐蚀形貌
[1] IABSE, translated by Shi G. Use and Application of High-Performance Steels for Steel Structures [M]. Beijing: China Architecture & Building Press, 2010: 1(国际桥梁与结构工程协会编著, 施刚译. 高性能钢材在钢结构中的应用 [M]. 北京: 中国建筑工业出版社, 2010: 1)
[2] Hou B R, Zhang D, Wang P.Marine corrosion and protection: Current status and prospect[J]. Bull. Chin. Acad. Sci., 2016, 31: 1326(侯保荣, 张盾, 王鹏. 海洋腐蚀防护的现状与未来[J]. 中国科学院院刊, 2016, 31: 1326)
[3] Cao H T, Li X T.Corrosion protection requirements and technical measures of fasteners based on the marine environment[J]. Surf. Technol., 2013, 42(1): 105(曹宏涛, 李雪亭. 基于海洋环境的紧固件腐蚀防护要求及技术措施[J]. 表面技术, 2013, 42(1): 105)
[4] Zhang Q X, Xu M, Wang X T, et al.Research progress of heavy-duty anticorrosive coating applied on marine steel structure[J]. Equip. Environ. Eng., 2015, 12(4): 60(张巧霞, 许沫, 王秀通等. 重防腐涂料在海洋工程钢结构中的研究进展[J]. 装备环境工程, 2015, 12(4): 60)
[5] Tachibana K, Morinaga Y, Mayuzumi M.Hot dip fine Zn and Zn-Al alloy double coating for corrosion resistance at coastal area[J]. Corros. Sci., 2007, 49: 149
[6] Azaroual M A, Ei Harrak E F, Touir R, et al. Synergistic corrosion protection for galvanized steel in 3.0% NaCl solution by sodium gluconate and cationic surfactant[J]. J. Mol. Liq., 2016, 220: 549
[7] Yaro A S, Khadom K W, Khadom A A.Study for prevention of steel corrosion by sacrificial anode cathodic protection[J]. Theor. Found. Chem. Eng., 2013, 47: 266
[8] Lee H S, Singh J K, Park J H.Pore blocking characteristics of corrosion products formed on aluminum coating produced by arc thermal metal spray process in 3.5wt.% NaCl solution[J]. Construc. Build. Mater., 2016, 113: 905
[9] Lou M, Hu Y L, Qiang W J, et al.Application of high velocity arc sprayed coatings in preventing steel structures from corrosion[J]. Mater. Prot., 2011, 44(3): 54(楼淼, 胡永乐, 强文江等. 高速电弧喷涂层在钢结构防腐蚀中的作用及应用现状[J]. 材料保护, 2011, 44(3): 54)
[10] Liang X B, Liu Y, Chen Y X, et al.Integrated technology of materials preparation and formation based on high velocity arc spraying[J]. J. Acad. Armored Force Eng., 2008, 22(6): 79(梁秀兵, 刘燕, 陈永雄等. 基于高速电弧喷涂的材料制备与成型一体化技术[J]. 装甲兵工程学院院报, 2008, 22(6): 79)
[11] Liang X B, Bai J Y, Cheng J B, et al.Study on amorphous and nanocrystalline composite coatings prepared by arc spraying process[J]. Thermal Spray Technol., 2009, 1(2): 23(梁秀兵, 白金元, 程江波等. 电弧喷涂非晶纳米晶复合涂层材料研究[J]. 热喷涂技术, 2009, 1(2): 23)
[12] Liu Q, Xiao H Q, Ma S N.Progress of arc spraying on anticorrosion coating[J]. Surf. Technol., 2004, 33(5): 15(刘谦, 肖宏清, 马世宁. 电弧喷涂防腐蚀涂层研究[J]. 表面技术, 2004, 33(5): 15)
[13] Li G H, Pan S P, Qin J Y, et al.Insight into thermodynamics and corrosion behavior of Al-Ni-Gd glassy alloys from atomic structure[J]. Corros. Sci., 2013, 66: 360
[14] Jinal R, Raja V S, Gibson M A, et al.Effect of annealing below the crystallization temperature on the corrosion behavior of Al-Ni-Y metallic glasses[J]. Corros. Sci., 2014, 84: 54
[15] Lahiri D K. Gill P, Scudino S, et al.Cold sprayed aluminum based glassy coating: Synthesis, wear and corrosion properties[J]. Surf. Coat. Technol., 2013, 232: 33
[16] Tan C L, Zhu H M, Kuang T C, et al.Laser cladding Al-based amorphous-nanocrystalline composite coatings on AZ80 magnesium alloy under water cooling condition[J]. J. Alloys Compd., 2017, 690: 108
[17] Henao J, Concustel A L, Cano I G, et al.Novel Al-based metallic glass coatings by cold gas spray[J]. Mater. Des., 2016, 94: 253
[18] Liang X B, Zhang Z B, Chen Y X, et al.Study of Al-based amorphous and nanocrystalline composite coating[J]. Acta Metall. Sin., 2012, 48: 289(梁秀兵, 张志彬, 陈永雄等. 铝基非晶纳米晶复合涂层研究[J]. 金属学报, 2012, 48: 289)
[19] Liang X B, Chen Y X, Cheng J B, et al.The Arc Spraying Metastable Composite Coating Technology [M]. Beijing: Science Press, 2014: 151(梁秀兵, 陈永雄, 程江波等. 电弧喷涂亚稳态复合涂层技术 [M]. 北京: 科学出版社, 2014: 151)
[20] Luo D W, Li C B, Chen W W.Recent progress for metallic glass coatings[J]. Mater. Rev., 2015, 29(3): 88(罗大为, 李聪勃, 陈为为. 非晶态合金涂层的研究进展[J]. 材料导报, 2015, 29(3): 88)
[21] Verdon C, Karimi A, Martin J L.A study of high velocity oxy-fuel thermally sprayed tungsten carbide based coatings. Part 1: Microstructures[J]. Mater. Sci. Eng., 1998, A246: 11
[22] Liu C, Zhao W M, Ai H, et al.Electrochemical corrosion behaviors of arc-sprayed aluminum coating[J]. J. Chin. Soc. Corros. Prot., 2011, 31: 62(刘存, 赵卫民, 艾华等. 电弧喷涂铝涂层的腐蚀电化学行为[J]. 中国腐蚀与防护学报, 2011, 31: 62)
[23] Cao C N.Principles of Electrochemistry of Corrosion [M]. 3rd Ed., Beijing: Chemical Industry Press, 2008: 255(曹楚南. 腐蚀电化学原理 [M]. 第3版. 北京: 化学工业出版社, 2008: 255)
[24] Wang X F, Wu X Q, Lin J G, et al.The influence of heat treatment on the corrosion behaviour of as-spun amorphous Al88Ni6La6 alloy in 0.01M NaCl solution[J]. Mater. Lett., 2007, 61: 1715
[25] Wu X Q, Ma M, Chan C G, et al.Comparative study on thermodynamical and electrochemical behavior of Al88Ni6La6 and Al86Ni6La6Cu2 amorphous alloys[J]. J. Rare Earths, 2007, 25: 381
[26] Roy A, Mandhyan A K, Sahoo K L, et al.Electrochemical response of amorphous and devitrified Al-Ni-La-X (X=Ag, Cu) alloys[J]. Mater. Corros., 2015, 60: 431
[27] Gupta R K, Das H, Pal T K.Influence of processing parameters on induced energy, mechanical and corrosion properties of FSW butt joint of 7475 AA[J]. J. Mater. Eng. Perform., 2012, 21: 1645
[28] Huang L C, Gu A, Liu H C, et al.Corrosion failure of aluminum alloy parts on airplane used in marine environment[J]. J. Beijing Univ. Aeron. Astron., 2008, 34: 1217(黄领才, 谷岸, 刘慧丛等. 海洋环境下服役飞机铝合金零件腐蚀失效分析[J]. 北京航空航天大学学报, 2008, 34: 1217)
[29] Dong C F, Sheng H, An Y H, et al.Local electrochemical behavior of 2A12 aluminium alloy in the initial stage of atmospheric corrosion under Cl- conditions[J]. J. Univ. Sci. Technol. Beijing, 2009, 31: 878(董超芳, 生海, 安英辉等. Cl-作用下2A12铝合金在大气环境中腐蚀初期的微区电化学行为[J]. 北京科技大学学报, 2009, 31: 878)
[1] 许林杰, 刘徽, 任玲, 杨柯. CuNi-Ti合金抗支架内再狭窄与耐蚀性能的影响[J]. 金属学报, 2023, 59(4): 577-584.
[2] 黄一川, 王清, 张爽, 董闯, 吴爱民, 林国强. 用于燃料电池双极板的不锈钢成分优化[J]. 金属学报, 2021, 57(5): 651-664.
[3] 王雪梅, 殷正正, 于晓彤, 邹玉红, 曾荣昌. AZ31镁合金表面苯丙氨酸、甲硫氨酸和天冬酰胺诱导Ca-P涂层耐蚀性能比较[J]. 金属学报, 2021, 57(10): 1258-1271.
[4] 陈永君, 白妍, 董闯, 解志文, 燕峰, 吴迪. 基于有限元分析的准晶磨料强化不锈钢表面钝化行为[J]. 金属学报, 2020, 56(6): 909-918.
[5] 魏琳,王志军,吴庆峰,尚旭亮,李俊杰,王锦程. Mo元素及热处理对Ni2CrFeMox高熵合金在NaCl溶液中耐蚀性能的影响[J]. 金属学报, 2019, 55(7): 840-848.
[6] 范丽, 陈海龑, 董耀华, 李雪莹, 董丽华, 尹衍升. 激光熔覆铁基合金涂层在HCl溶液中的腐蚀行为[J]. 金属学报, 2018, 54(7): 1019-1030.
[7] 杨海欧, 尚旭亮, 王理林, 王志军, 王锦程, 林鑫. 单相CoCrFeNi高熵合金的组成元素对其在NaCl溶液中的耐蚀性能的影响[J]. 金属学报, 2018, 54(6): 905-910.
[8] 杨柯, 牛梦超, 田家龙, 王威. 新一代飞机起落架用马氏体时效不锈钢的研究[J]. 金属学报, 2018, 54(11): 1567-1585.
[9] 张二林, 王晓燕, 憨勇. 医用多孔Ti及钛合金的国内研究现状[J]. 金属学报, 2017, 53(12): 1555-1567.
[10] 彭聪, 张书源, 任玲, 杨柯. 冷却速率对含Cu钛合金显微组织和性能的影响[J]. 金属学报, 2017, 53(10): 1377-1384.
[11] 李慕勤, 姚海涛, 魏方红, 刘明达, 王赞, 彭书浩. 医用纯Mg表面多种复合处理膜层的组织结构和体内外性能[J]. 金属学报, 2017, 53(10): 1337-1346.
[12] 田家龙,李永灿,王威,严伟,单以银,姜周华,杨柯. 多相强化型马氏体时效不锈钢中的合金元素偏聚效应*[J]. 金属学报, 2016, 52(12): 1517-1526.
[13] 贺宏, 李静媛, 秦丽雁, 王一德, 房菲. 不同变形工艺后0Cr32Ni7Mo4N双相不锈钢的组织及性能*[J]. 金属学报, 2014, 50(1): 1-10.
[14] 韩啸,陈吉,孙成,武占文,吴新春,张星航. 块体超细晶304L不锈钢的腐蚀及钝化性能的研究[J]. 金属学报, 2013, 49(3): 265-270.
[15] 王艳秋,邵亚薇,孟国哲,张涛,王福会. Cu-Ni合金BTA复配体系钝化处理工艺研究[J]. 金属学报, 2012, 48(6): 744-748.