Please wait a minute...
金属学报  2018, Vol. 54 Issue (8): 1187-1192    DOI: 10.11900/0412.1961.2017.00488
  本期目录 | 过刊浏览 |
La含量对Ce-La合金氢化动力学的影响
王帅鹏, 罗文华(), 李赣, 李海波, 张广丰
表面物理与化学国家重点实验室 绵阳 621907
Effect of La Content on Hydriding Kinetics of Ce-La Alloys
Shuaipeng WANG, Wenhua LUO(), Gan LI, Haibo LI, Guangfeng ZHANG
Science and Technology on Surface Physics and Chemistry Laboratory, Mianyang 621907, China
引用本文:

王帅鹏, 罗文华, 李赣, 李海波, 张广丰. La含量对Ce-La合金氢化动力学的影响[J]. 金属学报, 2018, 54(8): 1187-1192.
Shuaipeng WANG, Wenhua LUO, Gan LI, Haibo LI, Guangfeng ZHANG. Effect of La Content on Hydriding Kinetics of Ce-La Alloys[J]. Acta Metall Sin, 2018, 54(8): 1187-1192.

全文: PDF(1728 KB)   HTML
摘要: 

采用压降法结合原位形貌观察研究了La含量(0~10%,质量分数)对Ce-La合金氢化动力学的影响,并利用XRD和Raman光谱仪对Ce-La合金表面氧化膜的结构进行了表征。结果表明,随La含量的增加,Ce-La合金的氢化反应进程不断加快,表现为孕育期时间变短,成核速率和反应速率增大。随着La含量增加,Ce-La合金表面氧化膜中的氧空位增多,CeO2的晶格常数变大。La掺杂引起的表面氧空位缺陷增强了H原子在氧化膜中的迁移性能,使得具有更高La含量的Ce-La合金的氢化反应进程变快。

关键词 Ce-La合金La含量氧空位氢化动力学    
Abstract

Various metals, such as uranium and plutonium, have the potential to form hydride phases while environment develop so that they are exposed to low standard of hydrogen in a long time storage environment. The generation of hydride phases has safety implications, for instance the potential to cause unintended thermal excursions and to adversely alter mechanical properties. So the reaction of alloys between hydrogen is of signi?cant industrial interest. The hydrogenation kinetics characteristics of Ce-La alloys have the similarity with some actinide materials. Investigating the growth kinetics of Ce-La alloy hydride reaction sites is of fundamental importance to the development of predictive model of hydriding behavior. In this work, the effect of La content (0~10%, mass fraction) on hydriding kinetics of Ce-La alloys was studied by pressure consume curve, and the effects of La content on surface morphology and oxidation film structure of Ce-La alloy were observed by in situ OM, XRD and Raman spectra. The results show that doped La can shorten the induction period and accelerate the nucleation rate, so as to accelerate the hydriding rate. Furthermore, doped La can cause the lattice expansion and promote the formation of oxygen vacancy in the oxidation film. The apparent activation energies of pure Ce and Ce-10La alloy are 51.12 and 41.53 kJ/mol, respectively, suggesting that the diffusion barrier of hydrogen in the oxidation film of Ce-10La alloys is lower. The oxygen vacancy and the lattice expansion caused by doped La may promote the diffusion ability of hydrogen in the oxide film. Hydrogen diffusion through the oxide film decides the hydriding rate. So doped La accelerate the hydrogenation.

Key wordsCe-La alloy    La content    oxygen vacancy    hydriding kinetics
收稿日期: 2017-11-20     
ZTFLH:  O643  
基金资助:国家自然科学基金项目No.11504344
作者简介:

作者简介 王帅鹏,男,1992年生,硕士

图1  不同La含量Ce-La合金预氧化后的XRD谱
图2  不同La含量Ce-La合金表面氧化物Raman谱
图3  不同La含量Ce-La合金氢化反应压力随时间的变化
图4  不同La含量Ce-La合金氢化后的表面形貌
图5  孕育期随La含量的变化
图6  不同La含量Ce-La合金氢化速率随时间的变化曲线
图7  不同温度下Ce和Ce-10La合金氢化反应压力随时间的变化
图8  Ce和Ce-10La合金孕育期随温度变化的Arrhenius曲线
[1] Zhan W C, Guo Y, Gong X Q, et al.Surface oxygen activation on CeO2 and its catalytic performances for oxidation reactions[J]. Sci. Sin.: Chim., 2012, 42: 433(詹望成, 郭耘, 龚学庆等. 二氧化铈表面氧的活化及对氧化反应的催化作用[J]. 中国科学: 化学, 2012, 42: 433)
[2] Vinodkumar T, Rao B G, Reddy B M.Influence of isovalent and aliovalent dopants on the reactivity of cerium oxide for catalytic applications[J]. Catal. Today, 2015, 253: 57
[3] Brierley M, Knowles J, Montgomery N, et al.Microstructure of surface cerium hydride growth sites[J]. J. Vac. Sci. Technol., 2014, 32A: 031402
[4] Knowles J P, Rule G, Brierley M.The morphology and anisotropic growth kinetics of cerium hydride reaction sites[J]. Corros. Sci., 2013, 77: 31
[5] Sun B, Liu H F, Song H F, et al.Microdynamics simulations of the hydrogen-corrosion resistance of passivation layers on Pu surface[J]. Acta Phy-Chim. Sin., 2009, 31(suppl.1): 81(孙博, 刘海风, 宋海峰等. 钚表面钝化层抗氢蚀机理的微观动力学模拟[J]. 物理化学学报, 2015(增刊1): 81)
[6] Mcgillivray G W, Knowles J P, Findlay I M, et al.The plutonium/hydrogen reaction: The pressure dependence of reaction initiation time and nucleation rate controlled by a plutonium dioxide over-layer[J]. J. Nucl. Mater., 2011, 412: 35
[7] Edelstein N M.Comparison of the electronic structure of the lanthanides and actinides[J]. J. Alloys Compd., 1995, 223: 197
[8] Ito M, Setoyama D, Matsunaga J, et al.Effect of electronegativity on the mechanical properties of metal hydrides with a fluorite structure[J]. J. Alloys Compd., 2006, 426: 67
[9] Haschke J M, Dinh L N.Chemistry and kinetics of the pyrophoric plutonium hydride-air reaction[J]. J. Alloys Compd., 2017, 698: 44
[10] Brill M, Bloch J, Shmariahu D, et al.The incipient kinetics of hydride growth on cerium surfaces[J]. J. Alloys Compd., 1995, 231: 368
[11] Hadano M, Urushihara N, Terada S, et al. Reaction kinetics of cerium thin films with H2, O2 and H2O systems at 298 K [J]. J. Alloys Compd., 2002, 330-332: 498
[12] Brierley M, Knowles J.Probing the cerium/cerium hydride interface using nanoindentation[J]. J. Alloys Compd., 2015, 645(suppl.1): S148
[13] Bach H T, Venhaus T J, Paglieri S N, et al. The effect of surface state on the kinetics of cerium-hydride formation [J]. J. Alloys Compd., 2007, 446-447: 567
[14] Zhang L Q, Cheng Y, Niu Z W, et al.First-principles investigations on structural, elastic, and thermodynamic properties of Ce-La alloys under high pressure[J]. Z. Naturforsch., 2014, 69A: 52
[15] Stakebake J L.Atmospheric oxidation of Pu-1wt.%Ga in the temperature range 150-500 ℃[J]. J. Less-Common Met., 1986, 123: 185
[16] Ganduglia-Pirovano M V, Hofmann A, Sauer J. Oxygen vacancies in transition metal and rare earth oxides: Current state of understanding and remaining challenges[J]. Surf. Sci. Rep., 2007, 62: 219
[17] Wheeler D W, Khan I.A Raman spectroscopy study of cerium oxide in a cerium-5wt.% lanthanum alloy[J]. Vib. Spectrosc., 2014, 70: 200
[18] McBride J R, Hass K C, Poindexter B D, et al. Raman and X-ray studies of Ce1-xRexO2-y, where Re=La, Pr, Nd, Eu, Gd, and Tb[J]. J. Appl. Phys., 1994, 76: 2435
[19] Weber W H, Hass K C, Mcbride J R.Raman study of CeO2: Second-order scattering, lattice dynamics, and particle-size effects[J]. Phys. Rev., 1993, 48B: 178
[20] Fernández-Torre D, Carrasco J, Ganduglia-Pirovano M V, et al. Hydrogen activation, diffusion, and clustering on CeO2(111): A DFT+U study[J]. J. Chem. Phys., 2014, 141: 014703
[21] Lim W F, Cheong K Y.Oxygen vacancy formation and annihilation in lanthanum cerium oxide as a metal reactive oxide on 4H-silicon carbide[J]. Phys. Chem. Chem. Phys., 2014, 16: 7015
[22] Tsunekawa S, Sivamohan R, Ito S, et al.Structural study on monosize CeO2-x nano-particles[J]. Nanostruct. Mater., 1999, 11: 141
[23] Uchida H, Terao K, Huang Y C.Current problems in the development and application of hydrogen storage materials[J]. Z. Phys. Chem., 1989, 164: 1275
[1] 杜宗罡, 徐涛, 李宁, 李文生, 邢钢, 巨璐, 赵利华, 吴华, 田育成. Ni-Ir/Al2O3 负载型催化剂的制备及其用于水合肼分解制氢性能[J]. 金属学报, 2023, 59(10): 1335-1345.
[2] 丘玉萍, 戴豪, 戴洪斌, 王平. 适于水合肼分解制氢的Ni-Pt/CeO2催化剂的表面组分调控[J]. 金属学报, 2018, 54(9): 1289-1296.
[3] 张霞; 孟皓; 孙挺 . Fe3+/TiO2复合纳米粒子的制备及可见光响应性能[J]. 金属学报, 2008, 44(11): 1394-1398 .
[4] 胡晓军; 松浦宏行; 月桥文孝; 周国治 . 界面非平衡氧传递过程动力学的解析[J]. 金属学报, 2007, 43(8): 829-833 .
[5] 胡晓军 . P2O5对熔渣界面氧迁移反应的影响及机理[J]. 金属学报, 2005, 41(6): 655-658 .
[6] 郭广思; 水丽; 王广太; 隋智通 . 还原扩散法制备DyFe2反应机理的探讨[J]. 金属学报, 2002, 38(3): 291-294 .
[7] 汪爱英; 孙超; 王冰; 宫骏; 黄荣芳; 闻立时 . 热丝化学气相沉积大面积金刚石膜温度场的模拟计算[J]. 金属学报, 2001, 37(11): 1217-1222 .
[8] 陶东平 . 粗糙表面化学反应动力学模型[J]. 金属学报, 2001, 37(10): 1073-1078 .
[9] 李学良; 鲁道荣; 朱云贵; 何建波; 王华林 . 表面部分成膜金属阳极溶解模型及其振荡与混沌行为[J]. 金属学报, 2001, 37(5): 493-498 .
[10] 郭兴敏; 鲁显哲 . Li2CO3在含碳球团还原中催化机理的研究[J]. 金属学报, 2000, 36(6): 638-641 .