Please wait a minute...
金属学报  2018, Vol. 54 Issue (7): 1059-1067    DOI: 10.11900/0412.1961.2017.00475
  本期目录 | 过刊浏览 |
DC铸造Al-12Si-0.65Mg-xMn合金中第二相的形成
王光东1, 田妮1,2(), 何长树1,2, 赵刚1,2, 左良2,3
1 东北大学材料科学与工程学院 沈阳 110819
2 东北大学材料各向异性与织构教育部重点实验室 沈阳 110819
3 中国科学院金属研究所 沈阳 110016
Formation of Second-Phases in a Direct-Chill Casting Al-12Si-0.65Mg-xMn Alloy
Guangdong WANG1, Ni TIAN1,2(), Changshu HE1,2, Gang ZHAO1,2, Liang ZUO2,3
1 School of Materials Science & Engineering, Northeastern University, Shenyang 110819, China;
2 Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110819, China
3 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
全文: PDF(13152 KB)   HTML
摘要: 

采用LSCM、XRD、SEM、TEM及其附带的EDS,结合相图分析研究了半连续铸造(DC铸造)Al-12Si-0.65Mg-(0~2.27)Mn (质量分数,%)合金铸锭中的第二相及其形成过程。结果表明,Al-12Si-0.65Mg合金铸锭中存在α-Al、共晶Si、Mg2Si和π相(Al8Mg3FeSi6),它们分别是在567 ℃通过L+Al5FeSi→α-Al+Si+Al8Mg3FeSi6、555 ℃通过L→α-Al+Si+Mg2Si及550~554 ℃通过L→α-Al+Si+Mg2Si+Al8Mg3FeSi6反应形成的。当合金中添加Mn时,α-Al枝晶明显细化,同时合金铸锭中出现α-Al(FeMn)Si相;当Mn含量(质量分数,下同)从0.10%增加至2.27%时,α-Al枝晶形貌、尺寸及数量无明显变化,α-Al(FeMn)Si数量增多而尺寸不变;当Mn含量达到1.07%时,合金在647 ℃通过L+Al6Mn→α-Al+Al9Mn4Si3反应生成尺寸约80 μm的Al9Mn4Si3,其中溶解了少量Fe形成Al9(FeMn)4Si3,随Mn含量增加其数量增多而尺寸不变;经550 ℃均匀化处理后,合金中的Mg2Si相溶入基体消失,共晶Si、π相和α-Al(FeMn)Si相球化成颗粒状,Al9(FeMn)4Si3相形貌、尺寸及数量几乎不变,Al-12Si-0.65Mg-(0.10~2.27)Mn合金基体中析出尺寸约几百纳米的Al9(MnFe)2Si3弥散相粒子,其数量随Mn含量增加而增多。

关键词 含Mg共晶Al-Si合金Mn第二相DC铸造均匀化    
Abstract

Mg-containing high Si aluminum alloy that can be heat treatment enhanced is widely used in the fields of engine, vehicle industry and aerospace, because of its high specific strength, high wear resistance, corrosion resistance and low thermal expansion coefficient. At present, the alloying to improve the microstructure of Mg-containing high Si aluminum alloy and improve its mechanical properties is an important research hotspot of this kind of alloy. As an important alloying element in aluminum alloy, Manganese is of great significance to study the type and formation process of Mn-containing second phase in Mg-containing high Si aluminum alloy. The second phases and their formation in a direct-chill casting Al-12Si-0.65Mg-(0~2.27)Mn (mass fraction, %) alloy were investigated by LSCM, XRD, SEM/EDS and TEM/EDS, combined with phase graph analysis. The results show that there are eutectic silicon, Mg2Si and π-(Al8Mg3FeSi6) besides matrix α-Al in the Mn-free Al-12Si-0.65Mg (mass fraction, %) alloy ingot, which are formed by the reactions of L+Al5FeSi→α-Al+Si+Al8Mg3FeSi6, L→α-Al+Si+Mg2Si and L→α-Al+Si+Mg2Si+Al8Mg3FeSi6 at 567, 555 and 550~554 ℃, respectively. The α-Al dendrites are obviously refined, and α-Al(FeMn)Si phase can be observed with the addition of Mn to Al-12Si-0.65Mg-(0.10~2.27)Mn (mass fraction, %) alloy ingot. With the Mn content increasing from 0.10% to 2.27%, the morphology of α-Al dendrites has no obvious change, and the number of α-Al(FeMn)Si increases gradually whereas the size of α-Al(FeMn)Si doesn't change much. There are some Al9(FeMn)4Si3 with the size of about 80 μm in the Al-12Si-0.65Mg-(1.07~2.27)Mn (mass fraction, %) alloy ingot with the Mn content over 1.07%, which are formed by the reaction of L+Al6Mn→α-Al+Al9Mn4Si3 at 647 ℃, and Al9Mn4Si3 turns into Al9(FeMn)4Si3 with Fe dissolved into it. The number of Al9(FeMn)4Si3 increases with the Mn content increasing from 1.07% to 2.27%, whereas the size of Al9(FeMn)4Si3 has no obvious change. Mg2Si entirely dissolves into the matrix. Eutectic silicon, π-(Al8Mg3FeSi6) and α-Al(FeMn)Si spheroidize into granules, whereas the size, the morphology and the number of Al9(FeMn)4Si3 remain unchanged after the Al-12Si-0.65Mg-xMn (mass fraction, %) alloy ingots were homogenized at 550 ℃. Simultaneously, there are many Al9(MnFe)2Si3 at hundreds of nanometer size precipitated out from the Al-12Si-0.65Mg-(0.10~2.27)Mn (mass fraction, %) alloy matrix after homogenization treatment, and the number of them increases with the increasing of Mn content.

Key wordsMg-containing eutectic Al-Si alloy    Mn    second-phase    direct-chill casting    homogenization
收稿日期: 2017-11-13      出版日期: 2017-12-19
ZTFLH:  TG146.2  
基金资助:国家自然科学基金项目No.51371045,国家重点研发计划项目Nos.2016YFB0300801和2016YFB1200506-12
作者简介:

作者简介 王光东,男,1990年生,博士生

引用本文:

王光东, 田妮, 何长树, 赵刚, 左良. DC铸造Al-12Si-0.65Mg-xMn合金中第二相的形成[J]. 金属学报, 2018, 54(7): 1059-1067.
Guangdong WANG, Ni TIAN, Changshu HE, Gang ZHAO, Liang ZUO. Formation of Second-Phases in a Direct-Chill Casting Al-12Si-0.65Mg-xMn Alloy. Acta Metall, 2018, 54(7): 1059-1067.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2017.00475      或      http://www.ams.org.cn/CN/Y2018/V54/I7/1059

No. Mg Si Mn Al
1 0.67 11.7 0.00 Bal.
2 0.66 11.4 0.10 Bal.
3 0.60 11.4 0.46 Bal.
4 0.67 11.7 0.60 Bal.
5 0.65 12.2 1.07 Bal.
6 0.60 11.7 2.27 Bal.
表1  合金铸锭化学成分
图1  Al-12Si-0.65Mg-xMn合金铸锭显微组织
图2  Al-12Si-0.65Mg和Al-12Si-0.65Mg-1.07Mn合金铸态组织的SEM-BSE像
Point Al Si Mn Fe Mg
1 93.88 3.98 0.00 0.09 2.06
2 94.32 3.74 0.05 0.09 1.80
3 69.42 17.90 0.00 4.02 8.65
4 75.04 16.07 5.59 1.23 2.07
5 85.59 11.00 0.00 0.05 3.35
6 63.67 11.74 20.30 2.78 1.50
表2  图2中各测试点EDS分析结果
图3  Al-12Si-0.65Mg-(0~2.27)Mn合金铸锭的XRD谱
图4  Al-12Si-0.65Mg-xMn合金经550 ℃、24 h均匀化处理并水淬后的显微组织
图5  Al-12Si-0.65Mg和Al-12Si-0.65Mg-1.07Mn合金铸锭经550 ℃、24 h均匀化处理并水淬后的SEM-BSE像
Point Al Si Mn Fe Mg
1 21.20 78.31 0.00 0.00 0.49
2 58.88 23.20 0.00 6.07 11.84
3 73.87 9.98 12.00 2.21 1.94
4 63.24 11.99 20.46 2.81 1.51
表3  图5中各测试点EDS分析结果
图6  Al-12Si-0.65Mg-xMn合金铸锭经550 ℃、24 h均匀化处理并水淬后的TEM像及图6b中1点的选区电子衍射花样
Point Al Si Mn Fe
1 69.22 14.86 11.90 4.02
2 77.42 11.90 4.58 6.10
表4  图6中各测试点的EDS分析结果
[1] Xiu Z Y, Chen G Q, Wang X F, et al.Microstructure and performance of Al-Si alloy with high Si content by high temperature diffusion treatment[J]. Trans. Nonferrous Met. Soc. China, 2010, 20: 2134
doi: 10.1016/S1003-6326(09)60430-1
[2] Zuo L, Yu F X, Zhao G, et al.A structural material part of a high Si Mg-containing Al alloy and the manufacture method [P]. Eur Pat, 08772999.2, 2009
[3] Liu F, Yu F X, Zhao D Z, et al.Microstructure and mechanical properties of an Al-12.7Si-0.7Mg alloy processed by extrusion and heat treatment[J]. Mater. Sci. Eng., 2011, A528: 3786
doi: 10.1016/j.msea.2011.01.041
[4] Burger G, Gupta A K, Sutak L, et al.Recrystallization in A6000-series automotive sheet alloy during solution heat treatment practice[J]. Mater. Sci. Forum, 1996, 217: 471
doi: 10.4028/www.scientific.net/MSF.217-222.471
[5] Wang Z W, Wang M P, Wang Z A, et al.Effects of on-line extrusion quenching technique on mechanical properties and microscopic structure of 6005A alloys employed in underground railway trains[J]. Chin. J. Nonferrous Met., 2001, 11: 603(王志伟, 汪明朴, 王正安等. 在线挤压淬火对地铁列车用6005A合金力学性能及微观组织的影响[J]. 中国有色金属学报, 2001, 11: 603)
doi: 10.3321/j.issn:1004-0609.2001.04.014
[6] Lu D H, Jiang Y H, Guan G S, et al.Refinement of primary Si in hypereutectic Al-Si alloy by electromagnetic stirring[J]. J. Mater. Process. Technol., 2007, 189: 13
doi: 10.1016/j.jmatprotec.2006.12.008
[7] Lin C, Wu S S, Lv S L, et al.Effects of ultrasonic vibration and manganese on microstructure and mechanical properties of hypereutectic Al-Si alloys with 2%Fe[J]. Intermetallics, 2013, 32: 176
doi: 10.1016/j.intermet.2012.09.001
[8] Qiu K, Wang R C, Peng C Q, et al.Effects of Mn and Sn on microstructure of Al-7Si-Mg alloy modified by Sr and Al-5Ti-B[J]. Trans. Nonferrous Met. Soc. China, 2015, 25: 3546
doi: 10.1016/S1003-6326(15)64075-4
[9] Huang H J, Cai Y H, Cui H, et al.Influence of Mn addition on microstructure and phase formation of spray-deposited Al-25Si-xFe-yMn alloy[J]. Mater. Sci. Eng., 2009, A502: 118
doi: 10.1016/j.msea.2008.10.005
[10] Hwang J Y, Doty H W, Kaufman M J.The effects of Mn additions on the microstructure and mechanical properties of Al-Si-Cu casting alloys[J]. Mater. Sci. Eng., 2008, A488: 496
[11] Wang F, Zhang J S, Xiong B Q, et al.Effect of Fe and Mn additions on microstructure and mechanical properties of spray-deposited Al-20Si-3Cu-1Mg alloy[J]. Mater. Charact., 2009, 60: 384
doi: 10.1016/j.matchar.2008.10.011
[12] Wang E R, Hui X D, Chen G L.Eutectic Al-Si-Cu-Fe-Mn alloys with enhanced mechanical properties at room and elevated temperature[J]. Mater. Des., 2011, 32: 4333
doi: 10.1016/j.matdes.2011.04.005
[13] Liu Y L, Kang S B.The solidification process of Al-Mg-Si alloys[J]. J. Mater. Sci., 1997, 32: 1443
doi: 10.1023/A:1018545732009
[14] Yan L Z, Zhang Y A, Li X W, et al.Microstructural evolution of Al-0.66Mg-0.85Si alloy during homogenization[J]. Trans. Nonferrous Met. Soc. China, 2014, 24: 939
doi: 10.1016/S1003-6326(14)63146-0
[15] Lee D H, Park J H, Nam S W.Enhancement of mechanical properties of Al-Mg-Si alloys by means of manganese dispersoid[J]. Mater. Sci. Technol., 1999, 15: 450
doi: 10.1179/026708399101505923
[16] Han Y, Ma K, Li L, et al.Study on microstructure and mechanical properties of Al-Mg-Si-Cu alloy with high manganese content[J]. Mater. Des., 2012, 39: 418
doi: 10.1016/j.matdes.2012.01.034
[17] Backerud L, Chai G, Tamminen J.Solidification Characteristics of Aluminium Alloys[M]. Oslo, Norway: AFS/Skanaluminum, 1990: 71
[18] Tebib M, Samuel A M, Ajersch F, et al.Effect of P and Sr additions on the microstructure of hypereutectic Al-15Si-14Mg-4Cu alloy[J]. Mater. Charact., 2014, 89: 112
doi: 10.1016/j.matchar.2014.01.005
[19] Wu C T, Lee S L, Hsieh M H, et al.Effects of Mg content on microstructure and mechanical properties of Al-14.5Si-4.5Cu alloy[J]. Metall. Mater. Trans., 2010, 41A: 708
doi: 10.1016/j.matchar.2010.06.022
[20] Rincón E, López H F, Cisneros M M, et al.Effect of temperature on the tensile properties of an as-cast aluminum alloy A319[J]. Mater. Sci. Eng., 2007, A452: 682
doi: 10.1016/j.msea.2006.11.029
[21] Mbuya T O, Odera B O, Ng'ang'a S P. Influence of iron on castability and properties of aluminium silicon alloys: Literature review[J]. Int. J. Cast Met. Res., 2003, 16: 451
doi: 10.1080/13640461.2003.11819622
[22] Cao X, Campbell J.The solidification characteristics of Fe-rich intermetallics in Al-11.5Si-0.4Mg cast alloys[J]. Metall. Mater. Trans., 2004, 35A: 1425
doi: 10.1007/s11661-004-0251-0
[23] Kuijpers N C W, Vermolen F J, Vuik C, et al. The dependence of the β-AlFeSi to α-Al(FeMn)Si transformation kinetics in Al-Mg-Si alloys on the alloying elements[J]. Mater. Sci. Eng., 2005, A394: 9
[24] Kuilpers N C W, Veremolen F J, Vuik K, et al. A model of the β-AlFeSi to α-Al(FeMn)Si transformation in Al-Mg-Si alloys[J]. Mater. Trans., 2003, 44: 1448
doi: 10.2320/matertrans.44.1448
[25] Liu C M, Jiang S N, Chen Z Y, et al.Aluminum Alloy Phase Diagram Set [M]. Changsha: Central South University Press, 2014: 949(刘楚明, 蒋树农, 陈志永等. 铝合金相图集 [M]. 长沙: 中南大学出版社, 2014: 949)
[26] Li Y J, Muggerud A M F, Olsen A, et al. Precipitation of partially coherent α-Al(Mn, Fe)Si dispersoids and their strengthening effect in AA3003 alloy[J]. Acta Mater., 2012, 60: 1004
doi: 10.1016/j.actamat.2011.11.003
[27] Dwyer L, Robson J, Fonseca J Q D, et al. Constituent particles and dispersoids in an Al-Mn-Fe-Si Alloy studied in three-dimensions by serial sectioning[J]. Mater. Sci. Forum, 2013, 765: 451
doi: 10.4028/www.scientific.net/MSF.765.451
[28] Fung K K, Zhou Y Q.Direct observation of the transformation of the icosahedral phase in (Al6Mn)1-xSix into α(AlMnSi)[J]. Philos. Mag., 1986, 54B: L27
[1] 刘金辉, 宋影伟, 单大勇, 韩恩厚. 铸态和锻造态Mg-5Y-7Gd-1Nd-0.5Zr合金腐蚀行为对比研究[J]. 金属学报, 2018, 54(8): 1141-1149.
[2] 康慧君, 李金玲, 王同敏, 郭景杰. 定向凝固Al-Mn-Be合金初生金属间化合物相生长行为及力学性能[J]. 金属学报, 2018, 54(5): 809-823.
[3] 秦凤明, 李亚杰, 赵晓东, 何文武, 陈慧琴. 含N量对Mn18Cr18N奥氏体不锈钢的析出行为及力学性能的影响[J]. 金属学报, 2018, 54(1): 55-64.
[4] 郭靖,郭汉杰,方克明,段生朝,石骁,杨文晟. 钢中第二相粒子形貌预报理论和检测方法[J]. 金属学报, 2017, 53(7): 789-796.
[5] 刘贤翠, 潘冶, 唐智骄, 何为桥, 陆韬. Al-Mn系合金的组织控制与高温性能研究[J]. 金属学报, 2017, 53(11): 1487-1494.
[6] 袁训华, 张启富. 22MnB5热成形钢奥氏体化时热镀Al-10%Si镀层组织的演化[J]. 金属学报, 2017, 53(11): 1495-1503.
[7] 潘瑜, 张殿涛, 谭雨宁, 李珍, 郑玉峰, 李莉. 等通道挤压制备医用超细晶Mg-3Sn-0.5Mn合金及其力学性能[J]. 金属学报, 2017, 53(10): 1357-1363.
[8] 耿遥祥,特古斯,汪海斌,董闯,王宇鑫. Sn的加入对MnFe(P, Si)合金显微组织和磁性的影响[J]. 金属学报, 2017, 53(1): 77-82.
[9] 李飞,张华煜,何文武,陈慧琴,郭会光. Mn18Cr18N奥氏体不锈钢的压缩拉伸连续加载变形行为*[J]. 金属学报, 2016, 52(8): 956-964.
[10] 王艳秋,吴昆,王福会. 第二相对镁基材料微弧氧化过程的影响机制*[J]. 金属学报, 2016, 52(6): 689-697.
[11] 王建国,刘东,杨艳慧. GH4169合金非均匀组织在加热过程中的演化机理*[J]. 金属学报, 2016, 52(6): 707-716.
[12] 张文颖, 李俊, 周波. 金属连接体涂层材料MnCo2O4尖晶石的氧化动力学行为和电性能*[J]. 金属学报, 2016, 52(3): 355-360.
[13] 尹炎祺,伍翠兰,谢盼,朱恺,田松栗,韩梅,陈江华. 冷轧及退火制备的超细晶粒双相Mn12Ni2MoTi(Al)钢*[J]. 金属学报, 2016, 52(12): 1527-1535.
[14] 张骏,姚美意,冯炫凯,王志刚,黄娇,戴训,张金龙,周邦新. Zr-Sn-Fe-Cr-(Nb)合金在500 ℃过热蒸汽中的腐蚀各向异性研究*[J]. 金属学报, 2016, 52(12): 1565-1571.
[15] 吕昭平, 蒋虽合, 何骏阳, 周捷, 宋温丽, 吴渊, 王辉, 刘雄军. 先进金属材料的第二相强化*[J]. 金属学报, 2016, 52(10): 1183-1198.