Please wait a minute...
金属学报  2018, Vol. 54 Issue (3): 470-484    DOI: 10.11900/0412.1961.2017.00460
  本期目录 | 过刊浏览 |
Cu-Al复合材料连铸直接成形数值模拟研究
刘新华1,2, 付华栋1,2, 何兴群1, 付新彤1, 江燕青1, 谢建新1,2()
1 北京科技大学新材料技术研究院 北京 100083
2 北京科技大学材料先进制备技术教育部重点实验室 北京 100083
Numerical Simulation Analysis of Continuous Casting Cladding Forming for Cu-Al Composites
Xinhua LIU1,2, Huadong FU1,2, Xingqun HE1, Xintong FU1, Yanqing JIANG1, Jianxin XIE1,2()
1 Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
2 Key Laboratory for Advanced Materials Processing (MOE), University of Science and Technology Beijing, Beijing 100083, China
引用本文:

刘新华, 付华栋, 何兴群, 付新彤, 江燕青, 谢建新. Cu-Al复合材料连铸直接成形数值模拟研究[J]. 金属学报, 2018, 54(3): 470-484.
Xinhua LIU, Huadong FU, Xingqun HE, Xintong FU, Yanqing JIANG, Jianxin XIE. Numerical Simulation Analysis of Continuous Casting Cladding Forming for Cu-Al Composites[J]. Acta Metall Sin, 2018, 54(3): 470-484.

全文: PDF(6468 KB)   HTML
摘要: 

建立了Cu-Al复合材料连铸成形的数值模拟模型,确定了模型的边界条件,提出了复合过程处理和结果评价方法。通过与部分实验结果对比表明,模拟结果与实验结果一致。以铜包铝棒坯立式连铸和Cu-Al复合板坯水平连铸过程为例,采用ProCAST软件对其稳态温度场进行了数值模拟分析,得到了各工艺参数对连铸过程的影响规律,给出了合理的工艺参数范围,并结合模拟的参数进行相应的实验研究。结果表明,本工作建立的连铸复合模型、确定的边界条件、提出的复合过程处理和结果评价方法合理,可有效用于连铸复合成形模拟分析。计算结果表明,制备横断面为100 mm×100 mm、Cu包覆层厚度(4~10 mm)的铜包铝棒坯可行的连铸工艺参数为:Cu液温度1250 ℃,Al液温度750 ℃,结晶器长度200 mm,芯棒管长度290 mm,一冷水流量1600~2000 L/h,二冷水流量900~1300 L/h,二冷水距结晶器出口距离30 mm,拉坯速率60~80 mm/min;制备厚度20 mm、宽度75 mm、Cu包覆层厚度(4~7 mm)的Cu-Al复合板坯可行的工艺参数为:Cu液温度1250 ℃,Al液温度760~800 ℃,拉坯速率40~80 mm/min,Al液导流管长度20 mm。

关键词 Cu-Al复合材料连铸复合成形温度场数值模拟    
Abstract

High performance Cu-Al composites have widely applied in aviation, aerospace and other fields, at the same time the continuous casting as one of composite forming technologies has been also developed in recent years. Obviously, it is an effective and cheap way to numerically simulate the solidification process of short process continuous casting for manufacturing Cu-Al composites before fabricating them. To meet the need of simulation, in this work, a numerical method for theoretically describing the Cu-Al composite forming in continuous casting processes was proposed. The vertical continuous casting of copper clad aluminum bar billet and the horizontal continuous casting of copper and aluminum composite plate were performed. Based on this method, the steady state temperature fields in solidification processes in the above two kinds of casting technologies were numerically simulated by using proCAST software package. In this work the effects of the theoretical parameters on the steady state temperature fields and then on the performance of Cu-Al composites fabricated by using the above two casting technologies were carefully discussed. It is found that the experimental and simulated results are in good agreement. For the cases of the copper clad aluminum bar billet with a cross section of 100 mm×100 mm, and the copper or aluminum plate with a thickness of 20 mm and a width of 75 mm (coat thicknesses of 4~7 mm), the feasible parameters for producing high performance Cu-Al composites, for examples, are as follows: for the former the temperature of copper liquid is 1250 ℃, the temperature of aluminum liquid is 750 ℃, the length of crystallizer is 200 mm, the length of graphite mandrel tube is 290 mm, the flux of the first cooling water is 1600~2000 L/h, the flux of the second cooling water is 900~1300 L/h, the distance from the second cooling water to the exit of crystallizer is 30 mm, and the withdrawing speed is 60~80 mm/min. For the latter the temperature of copper melt was 1250 ℃, the temperatures of aluminum melt are 760~800 ℃, the withdrawing speed is 40~80 mm/min, and the length of aluminum duct is 20 mm.

Key wordsCu-Al composites    continuous casting composite forming    temperature field    numerical simulation
收稿日期: 2017-11-01     
基金资助:资助项目 国家高技术研究发展计划项目No.2013AA030706,北京市科技计划项目No.Z141100004214003,云南省科技合作项目No.2015IB012
作者简介:

作者简介 刘新华,男,1975年生,研究员,博士

图1  铜包铝立式连铸直接复合成形工艺原理示意图
图2  铜包铝立式连铸复合几何模型示意图
图3  Cu包Al立式连铸温度场稳态模拟边界条件(左)和界面条件(右)示意图
图4  模拟得到的典型温度场分布图及模拟结果的评价指标物理意义示意图
L0 / mm s / mm h / mm v / (mm?min-1) L2 / mm
80 50 180 130 132.0
100 50 180 130 120.8
100 10 180 130 72.2
100 50 180 130 70.8
100 50 180 100 93.8
100 50 190 130 106.9
150 50 180 130 47.7
150 10 180 130 47.5
150 10 240 130 8.1
150 10 180 100 30.5
150 10 240 100 -12.2
200 50 270 130 99.8
200 50 310 100 35.4
200 10 270 130 48.3
200 10 310 100 16.8
250 50 310 130 103.5
250 50 380 100 16.2
250 10 310 130 64.5
250 10 380 100 -5.8
表1  结晶器长度对Cu和Al凝固固/液界面位置的影响
h
mm
Q1
Lh-1
Q2
Lh-1
TAl
v
mmmin-1
L1
mm
L2
mm
L3
mm
Ts
250 1600 900 750 60 73.5 78.15 67.08 740
270 1600 900 750 60 73.5 69.26 47.61 710
290 1600 900 750 60 73.5 35.82 27.92 685
310 1600 900 750 60 73.5 18.62 5.93 650
330 1600 900 750 60 73.4 6.43 -3.24 630
表2  芯棒管长度对Cu和Al凝固固/液界面位置的影响
No. h
mm
Q1
Lh-1
Q2
Lh-1
TAl
v
mmmin-1
L1
mm
L2
mm
L3
mm
Ts
1 290 1400 900 750 60 72.5 37.94 28.95 690
2 290 1600 900 750 60 74.0 35.82 27.92 685
3 290 1800 900 750 60 74.5 34.95 26.83 683
4 290 2000 900 750 60 74.5 33.86 26.82 680
表3  一冷水流量对Cu和Al凝固固/液界面位置的影响
No. h
mm
Q1
Lh-1
Q2
Lh-1
TAl
v
mmmin-1
L1
mm
L2
mm
L3
mm
Ts
1 290 1600 700 750 60 75.5 35.94 27.93 690
2 290 1600 900 750 60 75.0 35.82 27.92 685
3 290 1600 1100 750 60 73.5 35.12 26.83 687
4 290 1600 1300 750 60 73.5 34.95 26.83 684
5 290 1600 1500 750 60 73.5 33.84 25.83 680
表4  二冷水流量对Cu和Al凝固固/液界面位置的影响
No. h
mm
Q1
Lh-1
Q2
Lh-1
TAl
v
mmmin-1
L1
mm
L2
mm
L3
mm
Ts
1 290 1600 900 750 40 55.5 -11.51 0 -
2 290 1600 900 750 60 75.0 35.82 27.92 685
3 290 1600 900 750 80 80.0 59.07 51.85 725
4 290 1600 900 750 100 81.0 76.93 62.97 770
5 290 1600 900 750 120 82.5 87.49 70.39 790
表5  连铸速率对Cu和Al凝固固/液界面位置的影响
图5  不同冷却水流量下试样的截面形貌
图6  水平连铸成形制备Cu-Al复合薄板坯原理示意图
图7  Cu-Al复合板坯水平连铸几何模型
图8  Al液导流管长度对Cu和Al凝固位置的影响
图9  拉坯速率对Cu和Al凝固位置的影响
图10  Al液温度对Cu和Al凝固位置的影响
图11  不同拉坯速率下的板坯形貌
[1] Mitsugi S, Oelschlagel D, Miyake Y, et al.Properties of copper-clad aluminum bus bar[J]. Hitachi Rev., 1974, 23: 261
[2] Gibson A.Emerging applications for copper-clad steel and aluminum wire[J]. Wire J. Int., 2008, 41: 142
[3] Luo Y B, Liu X H, Xie J X.Effects of sectional form and configuration on the conductivity of copper cladding aluminum bars with a rectangle section[J]. J. Univ. Sci. Technol. Beijing, 2009, 30: 1292(罗奕兵, 刘新华, 谢建新. 矩形截面铜包铝导电排的导电性能及断面形状结构的影响 [J]. 北京科技大学学报, 2009, 30: 1292)
[4] Wan T Y.The production method of copper-plating aluminum wire and its products[J]. Alum. Proc., 1992,(3): 53(万天一. 镀铜铝线及其制品的生产方法 [J]. 铝加工,1992, (3): 53)
[5] Dion P A.Method of metal cladding [P]. US Pat, US3408727, 1968
[6] Wang Y H, Wu Y Z, Ma Y Q, et al.Microstructure and mechanical properties of copper clad aluminum wire by drawing at room temperature[J]. Chin. J. Nonferrous Met., 2006, 16: 2066(王跃华, 吴云忠, 马永庆等. 铜包铝线材室温拉变形后的显微组织和力学性能 [J]. 中国有色金属学报, 2006, 16: 2066)
[7] Rhee K Y, Han W Y, Park H J.Fabrication of aluminum/copper clad composite using hot hydrostatic extrusion process and its material characteristics[J]. Mater. Sci. Eng., 2004, A384: 70
[8] Li X B, Zu G Y, Wang P.Microstructural development and its effects on mechanical properties of Al/Cu laminated composite[J]. Trans. Nonferrous Met. Soc. China, 2015, 25: 36
[9] Li L, Nagai K, Yin F X.Progress in cold roll bonding of metals[J]. Sci. Technol. Adv. Mater., 2008, 9: 023001
[10] Yang Y S, Yang D D, Yang M, et al.Hot extrusion forming process of copper and aluminum composite plate[J]. J. Henan Univ. Sci. Technol.: Nat. Sci., 2011, 32(6): 1(杨永顺, 杨栋栋, 杨明等. 铜铝复合板热挤压成形工艺 [J]. 河南科技大学学报: 自然科学版, 2011, 32(6): 1)
[11] Zhu X H, Lv X F, Chen G Q, et al.Failure analysis on explosive welded composite plate[J]. Heat Treat. Met., 2014, 68(1): 144(朱晓红, 吕新峰, 陈国琦等. 复合板爆炸焊接的失效分析 [J]. 金属热处理, 2014, 68(1): 144)
[12] Chen M, Wang X Y, Dong T Y, et al.Performance analysis on interlayer of high purity aluminum and copper bonded by explosive welding[J]. Nonferrous Metall., 2014,(5): 56, 2014, (5): 56)
[13] Lu W K, Xie J P, Wang A Q, et al.Effects of annealing temperature on interfacial microstructure and mechanical properties of Cu/Al roll-casted composite plate[J]. Mater. Mech. Eng., 2014, 38(3): 14(路王珂, 谢敬佩, 王爱琴等. 退火温度对铜铝铸轧复合板界面组织和力学性能的影响 [J]. 机械工程材料, 2014, 38(3): 14)
[14] Cui J Z.Fabrication of aluminum-stainless steel compound belt by liquid-solid phase rolling[J]. Mater. Rev., 2001, 15(2): 14(崔建忠. 液-固相轧制复合法生产铝不锈钢复合带[J]. 材料导报, 2001, 15(2): 14)
[15] Zhang H, Xie J P, Shang Z P, et al.Bonding interface structure and properties of Cu-Al-Cu compound plate fabricated by cast-rolled process[J]. J. Henan Univ. Sci. Technol.: Nat. Sci. Ed., 2015, 36(3): 1(张衡, 谢敬佩, 尚郑平等. 铸轧法制备铜-铝-铜复合板的界面组织与性能 [J]. 河南科技大学学报: 自然科学版, 2015, 36(3): 1)
[16] Xie J X, Liu X H, Liu X F, et al. Horizontal continuous direct composite cast forming equipment and technology of a cladding materials [P]. Chin Pat, 200610112817.3, 2006(谢建新, 刘新华, 刘雪峰等.一种包复材料水平连铸直接复合成形设备与工艺 [P]. 中国专利, 200610112817.3, 2006)
[17] Xie J X, Liu X H, Liu X F, et al. A high performance rectangle cross section copper cladding aluminum composite electric bus bar and manufacturing process [P]. Chin Pat, 200810057668.4, 2008(谢建新, 刘新华, 刘雪峰等.一种高性能铜包铝矩形横断面复合导电母排及其制备工艺 [P]. 中国专利, 200810057668.4, 2008)
[18] Wu Y F, Liu X H, Xie J X, et al.Copper cladding aluminum composite materials with rectangle section fabricated by horizontal core-filling continuous casting[J]. Chin. J. Nonferrous Met., 2012, 22: 2500(吴永福, 刘新华, 谢建新等. 矩形断面铜包铝复合材料水平连铸直接复合成形 [J]. 中国有色金属学报, 2012, 22: 2500)
[19] Xie J X, Liu X H, Huang H Y.Horizontal core-filling continuous casting of copper clad aluminum conductor materials: Properties and applications[J]. Light Met. Age, 2015, 73: 64
[20] Su Y J, Liu X H, Huang H Y, et al.Effects of processing parameters on the fabrication of copper cladding aluminum rods by horizontal core-filling continuous casting[J]. Metall. Mater. Trans., 2011, 42B: 104
[21] Su Y J, Liu X H, Huang H Y, et al.Interfacial microstructure and bonding strength of copper cladding aluminum rods fabricated by horizontal core-filling continuous casting[J]. Metall. Mater. Trans., 2011, 42A: 4088
[22] Xie J X, Wu C J, Liu X F, et al. A novel forming process of copper cladding aluminum composite materials with core-filling continuous casting [J]. Mater. Sci. Forum., 2007, 539-543: 956
[23] Hu N B, Liu Y W, Jia Z X, et al.Interface methods between HyperMesh and ProCAST[J]. Spec. Cast Nonferrous Alloys, 2014, 34: 143(胡宁波, 刘耀蔚, 贾志欣等. HyperMesh与ProCAST接口方式的研究 [J]. 特种铸造及有色合金, 2014, 34: 143)
[24] Liu X H, Fu X T, Fu H D, et al.Numerical simulation analysis of effects of processing parameters on forming process of vertical continuous core-filling casting for copper clad aluminum billets with large section[J]. Chin. J. Nonferrous Met., 2017, 27: 514(刘新华, 付新彤, 付华栋等. 大断面铜包铝棒坯立式连铸成形工艺参数对连铸复合过程影响的数值模拟 [J]. 中国有色金属学报, 2017, 27: 514)
[25] Zhang X J, Liu X H, Wu Y F, et al.Simulation on temperature field for solidification process of horizontal core-filling continuous casting of copper clad aluminum bars[J]. Foundry Eng., 2013, 37(3): 10(张小军, 刘新华, 吴永福等. 铜包铝扁坯水平连铸直接复合成形过程温度场的数值模拟 [J]. 铸造工程, 2013, 37(3): 10)
[26] Kim T G, Lee Z H.Time-varying heat transfer coefficients between tube-shaped casting and metal mold[J]. Int. J. Heat Mass Transfer, 1997, 40: 3513
[27] Yu C X.Engineering Heat Transfer Science [M]. Mount Emei: Southwest Jiaotong University Press, 1990: 8(于承训. 工程传热学 [M]. 峨眉山: 西南交通大学出版社, 1990: 8)
[28] Dai G S.Heat Transfer [M]. 2nd Ed., Beijing: Higher Education Press, 1999: 3(戴锅生. 传热学 [M]. 第2版. 北京: 高等教育出版社, 1999: 3)
[29] Weckman D C, Niessen P.A numerical simulation of the D. C. continuous casting process including nucleate boiling heat transfer[J]. Metall. Trans., 1982, 13B: 593
[30] Rohsenow W, Hartnett J P.Handbook of Heat Transfer[M]. New York: McGraw-Hill, 1973: 5
[31] Pioro I L.Experimental evaluation of constants for the Rohsenow pool boiling correlation[J]. Int. J. Heat Mass Transfer, 1999, 42: 2003
[1] 毕中南, 秦海龙, 刘沛, 史松宜, 谢锦丽, 张继. 高温合金锻件残余应力量化表征及控制技术研究进展[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[3] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[4] 周小宾, 赵占山, 汪万行, 徐建国, 岳强. 渣-金界面气泡夹带行为数值物理模拟[J]. 金属学报, 2023, 59(11): 1523-1532.
[5] 夏大海, 邓成满, 陈子光, 李天书, 胡文彬. 金属材料局部腐蚀损伤过程的近场动力学模拟:进展与挑战[J]. 金属学报, 2022, 58(9): 1093-1107.
[6] 胡龙, 王义峰, 李索, 张超华, 邓德安. 基于SH-CCT图的Q345钢焊接接头组织与硬度预测方法研究[J]. 金属学报, 2021, 57(8): 1073-1086.
[7] 李子晗, 忻建文, 肖笑, 王欢, 华学明, 吴东升. 热导型等离子弧焊电弧物理特性和熔池动态行为[J]. 金属学报, 2021, 57(5): 693-702.
[8] 杨勇, 赫全锋. 高熵合金中的晶格畸变[J]. 金属学报, 2021, 57(4): 385-392.
[9] 王富强, 刘伟, 王兆文. 铝电解槽中局部阴极电流增大对电解质-铝液两相流场的影响[J]. 金属学报, 2020, 56(7): 1047-1056.
[10] 刘继召, 黄鹤飞, 朱振博, 刘阿文, 李燕. 氙离子辐照后Hastelloy N合金的纳米硬度及其数值模拟[J]. 金属学报, 2020, 56(5): 753-759.
[11] 王波,沈诗怡,阮琰炜,程淑勇,彭望君,张捷宇. 冶金过程中的气液两相流模拟[J]. 金属学报, 2020, 56(4): 619-632.
[12] 唐海燕, 李小松, 张硕, 张家泉. 基于恒过热控制的感应加热中间包内钢水的流动与传热[J]. 金属学报, 2020, 56(12): 1629-1642.
[13] 许庆彦,杨聪,闫学伟,柳百成. 高温合金涡轮叶片定向凝固过程数值模拟研究进展[J]. 金属学报, 2019, 55(9): 1175-1184.
[14] 戴培元,胡兴,逯世杰,王义峰,邓德安. 尺寸因素对2D轴对称模型计算不锈钢管焊接残余应力精度的影响[J]. 金属学报, 2019, 55(8): 1058-1066.
[15] 逯世杰, 王虎, 戴培元, 邓德安. 蠕变对焊后热处理残余应力预测精度和计算效率的影响[J]. 金属学报, 2019, 55(12): 1581-1592.