Please wait a minute...
金属学报  2018, Vol. 54 Issue (7): 1031-1041    DOI: 10.11900/0412.1961.2017.00435
  本期目录 | 过刊浏览 |
两相区退火处理冷轧0.1C-5Mn中锰钢的氢脆敏感性
赵晓丽1,2, 张永健1, 邵成伟1, 惠卫军1(), 董瀚2
1 北京交通大学机械与电子控制工程学院 北京 1000442
2 钢铁研究总院 北京 100081
Hydrogen Embrittlement of Intercritically AnnealedCold-Rolled 0.1C-5Mn Steel
Xiaoli ZHAO1,2, Yongjian ZHANG1, Chengwei SHAO1, Weijun HUI1(), Han DONG2
1 School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, China
2 Central Iron and Steel Research Institute, Beijing 100081, China
全文: PDF(8981 KB)   HTML
摘要: 

对0.1C-5Mn中锰钢冷轧后在650 ℃进行不同保温时间的两相区逆相变退火处理,利用电化学充氢和慢应变速率拉伸(SSRT)实验研究了其氢脆敏感性。结果表明,冷轧后中锰钢在退火过程中发生奥氏体逆转变,在退火10 min时可获得优异的强度和塑性配合。随着退火时间延长,可扩散H含量及氢脆敏感性增加,特别是氢脆敏感性的增加幅度十分显著。充氢断口起裂区呈现典型的空心韧窝及包含奥氏体(变形后转变为马氏体)晶粒的实心韧窝的混合断裂模式,这种实心韧窝本质上是在应力作用下氢致裂纹沿奥氏体与铁素体的界面萌生与扩展而形成的一种脆性沿晶断裂。氢脆断裂行为主要与退火过程中逆转变奥氏体的含量及其机械稳定性等因素有关。

关键词 冷轧中锰钢氢脆敏感性两相区退火微观组织奥氏体稳定性    
Abstract

Medium-Mn steel typically alloyed with (3%~10%)Mn (mass fraction) has recently regained significant interest as one of the most promising candidates for the third-generation automobile steel due to its excellent combination of ultra-high strength and ductility as well as relatively low material cost and industrial feasibility. Considering the ever increasing strength level as well as the comparatively high amount of reverted austenite (RA) of medium-Mn steel, special attention began to be given to its hydrogen embrittlement (HE) behavior for ensuring the safety service of components made of this kind of steel. However, the effect of RA on HE of medium-Mn steel has not been fully understood. For this purpose, the susceptibility to HE of a cold-rolled medium-Mn steel 0.1C-5Mn intercritically annealed at 650 ℃ for different time to obtain different amounts of RA was investigated by using electrochemical hydrogen charging, thermal desorption spectrometry (TDS), slow strain rate test (SSRT) and SEM. The results show that the annealed samples exhibit a dual-phase microstructure of reverted globular shaped RA and ferrite. The ultimate tensile strength (σb) increases while the yield strength decreases with increasing annealing time, and both the total elongation (δ) and the product of σb to δ (σb×δ) initially increase and then decrease with increasing annealing time. That is to say, an excellent combination of strength and ductility could be obtained when the tested steel was annealed at 650 ℃ for 10 min. However, the results of TDS and SSRT show that both the absorbed diffusible hydrogen concentration and the susceptibility to HE increase with increasing annealing time, and the latter is more significant. SEM analysis of the fracture surfaces of fractured samples revealed that the hydrogen-charged annealed sample was fractured to leave both dimples filled with grains and empty dimples while the uncharged annealed specimen was ductile fractured to leave only empty dimples. The dimples filled with grains were basically a brittle intergranular cracking occurring along the boundaries of RA and/or martensite (formerly RA) grains by the hydrogen-assisted cracking mechanism. It is thus concluded that the HE behavior of intercritically annealed cold-rolled medium-Mn steel is primarily controlled by both the amount and mechanical stability of RA.

Key wordscold-rolled medium-Mn steel    susceptibility to hydrogen embrittlement    intercritical annealing    microstructure    austenite stability
收稿日期: 2017-10-18      出版日期: 2018-04-19
ZTFLH:  TG111  
基金资助:北京交通大学实验室研究课题项目No.16010211
作者简介:

作者简介 赵晓丽,女,1980年生,高级工程师

引用本文:

赵晓丽, 张永健, 邵成伟, 惠卫军, 董瀚. 两相区退火处理冷轧0.1C-5Mn中锰钢的氢脆敏感性[J]. 金属学报, 2018, 54(7): 1031-1041.
Xiaoli ZHAO, Yongjian ZHANG, Chengwei SHAO, Weijun HUI, Han DONG. Hydrogen Embrittlement of Intercritically AnnealedCold-Rolled 0.1C-5Mn Steel. Acta Metall Sin, 2018, 54(7): 1031-1041.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2017.00435      或      http://www.ams.org.cn/CN/Y2018/V54/I7/1031

图1  0.1C-5Mn钢冷轧态及冷轧后650 ℃退火不同时间后的TEM像
图2  冷轧态及两相区退火态的0.1C-5Mn钢XRD谱和奥氏体含量及其C含量随退火时间的变化
图3  冷轧态及冷轧后650 ℃退火不同时间0.1C-5Mn钢的拉伸性能随退火时间的变化
图4  冷轧态及两相区退火处理0.1C-5Mn钢中的充氢试样H逸出曲线及试样充氢前后H含量
图5  冷轧态和两相区退火处理0.1C-5Mn钢充氢前后的工程应力-应变曲线和氢脆敏感性指数
图6  冷轧态和650 ℃不同退火时间处理的冷轧0.1C-5Mn钢充氢断口的SEM像
图7  冷轧态和冷轧后650 ℃不同退火时间处理的0.1C-5Mn钢的未充氢和充氢断口裂纹源处的SEM像
Annealing time Average size of filled grain in dimple Average size of reverted austenite
min μm μm
5 0.46±0.08 -
10 0.63±0.12 0.68±0.25
30 0.82±0.11 0.89±0.27
360 1.01±0.19 1.10±0.45
表1  拉伸断口中韧窝内颗粒尺寸与奥氏体尺寸
Position in Fig.7f Mass fraction of Mn / % Position in Fig.7f Mass fraction of Mn / %
1 7.39 6 4.81
2 7.83 7 5.55
3 7.26 8 4.68
4 8.24 9 6.07
5 7.29 10 5.32
Mean value 7.60±0.42 Mean value 5.20±0.56
表2  图7f中冷轧退火360 min试样充氢拉伸断口中Mn含量EDS分析结果
图8  650 ℃退火30 min试样拉伸样断口侧面裂纹的SEM像
图9  冷轧态0.1C-5Mn钢中的位错胞状组织
图10  不同退火时间处理试样拉伸断裂后的奥氏体含量及其转变量和断口上实心韧窝所占比例
[1] Han Z Y, Zhang M D, Xu H F, et al.Research and application of high performance automobile steel[J]. Iron Steel, 2016, 51(2): 1(韩志勇, 张明达, 许海峰等. 高性能汽车钢组织性能特点及未来研发方向[J]. 钢铁, 2016, 51(2): 1)
[2] Lee Y K, Han J.Current opinion in medium manganese steel[J]. Mater. Sci. Technol., 2015, 31: 843
[3] Suh D W, Kim S J.Medium Mn transformation-induced plasticity steels: Recent progress and challenges[J]. Scr. Mater., 2017, 126: 63
[4] Cao W Q, Wang C, Shi J, et al.Microstructure and mechanical properties of Fe-0.2C-5Mn steel processed by ART-annealing[J]. Mater. Sci. Eng., 2011, A528: 6661
[5] Han J, Lee S J, Jung J G, et al.The effects of the initial martensite microstructure on the microstructure and tensile properties of intercritically annealed Fe-9Mn-0.05C steel[J]. Acta Mater., 2014, 78: 369
[6] Cai Z H, Ding H, Kamoutsi H, et al.Interplay between deformation behavior and mechanical properties of intercritically annealed and tempered medium-manganese transformation-induced plasticity steel[J]. Mater. Sci. Eng., 2016, A654: 359
[7] Shao C W, Hui W J, Zhang Y J, et al.Microstructure and mechanical properties of hot-rolled medium-Mn steel containing 3% aluminum[J]. Mater. Sci. Eng., 2017, A682: 45
[8] Li N, Shi J, Wang C Y, et al.Effect of annealing time on microstructure and mechanical properties of a cold rolled medium manganese steel[J]. Trans. Mater. Heat Treat., 2011, 32(8): 74(李楠, 时捷, 王存宇等. 两相区退火时间对冷轧中锰钢组织和力学性能的影响[J]. 材料热处理学报, 2011, 32(8): 74)
[9] Arlazarov A, Gouné M, Bouaziz O, et al.Evolution of microstructure and mechanical properties of medium Mn steels during double annealing[J]. Mater. Sci. Eng., 2012, A542: 31
[10] Yin H X, Zhao A M, Zhao Z Z, et al.Effect of annealing time on the microstructure and mechanical properties of a cold rolled medium-manganese TRIP steel[J]. J. Univ. Sci. Technol. Beijing, 2013, 35: 1158(尹鸿祥, 赵爱民, 赵征志等. 退火时间对冷轧中锰TRIP钢组织和力学性能的影响[J]. 北京科技大学学报, 2013, 35: 1158)
[11] Wang C, Cao W Q, Yan Y, et al.Influences of austenization temperature and annealing time on duplex ultrafine microstructure and mechanical properties of medium Mn steel[J]. J. Iron Steel Res. Int., 2015, 22: 42.
[12] Lee S, Shin S, Kwon M, et al.Tensile properties of medium Mn steel with a bimodal UFG α+γ and coarse δ-ferrite microstructure[J]. Metall. Mater. Trans., 2017, 48A: 1678
[13] Ronevich J A, De Cooman B C, Speer J G, et al. Hydrogen effects in prestrained transformation induced plasticity steel[J]. Metall. Mater. Trans., 2012, 43A: 2293
[14] Ryu J H, Chun Y S, Lee C S, et al.Effect of deformation on hydrogen trapping and effusion in TRIP-assisted steel[J]. Acta Mater., 2012, 60: 4085
[15] Han J, Nam J H, Lee Y K.The mechanism of hydrogen embrittlement in intercritically annealed medium Mn TRIP steel[J]. Acta Mater., 2016, 113: 1.
[16] Wang M M, Tasan C C, Koyama M, et al.Enhancing hydrogen embrittlement resistance of lath martensite by introducing nano-films of interlath austenite[J]. Metall. Mater. Trans., 2015, 46A: 3797
[17] Van Dijk N H, Butt A M, Zhao L, et al. Thermal stability of retained austenite in TRIP steels studied by synchrotron X-ray diffraction during cooling[J]. Acta Mater., 2005, 53: 5439
[18] Wang C, Shi J, Wang C Y, et al.Development of ultrafine lamellar ferrite and austenite duplex structure in 0.2C5Mn steel during ART-annealing[J]. ISIJ Int., 2011, 51: 651
[19] Lee S, Lee S J, De Cooman B C. Austenite stability of ultrafine-grained transformation-induced plasticity steel with Mn partitioning[J]. Scr. Mater., 2011, 65: 225
[20] Takai K, Watanuki R.Hydrogen in trapping states innocuous to environmental degradation of high-strength steels[J]. ISIJ Int., 2003, 43: 520.
[21] Wang M Q, Dong H, Hui W J, et al.Effect of hydrogen on notch tensile strength of high strength steel[J]. Trans. Mater. Heat Treat., 2006, 27(4): 57(王毛球, 董瀚, 惠卫军等. 氢对高强度钢缺口拉伸强度的影响[J]. 材料热处理学报, 2006, 27(4): 57)
[22] Escobar D P, Depover T, Duprez L, et al.Combined thermal desorption spectroscopy, differential scanning calorimetry, scanning electron microscopy and X-ray diffraction study of hydrogen trapping in cold deformed TRIP steel[J]. Acta Mater, 2012, 60: 2593
[23] Hui W J, Zhang Y J, Zhao X L, et al.Influence of cold deformation and annealing on hydrogen embrittlement of cold hardening bainitic steel for high strength bolts[J]. Mater. Sci. Eng., 2016, A662: 528
[24] Nagumo M, Takai K, Okuda N. Nature of hydrogen trapping sites in steels induced by plastic deformation [J]. J. Alloys Compd., 1999, 293-295: 310
[25] Suzuki N, Ishii N, Tuchida Y.Diffusible hydrogen behavior in pre-strained high strength steel[J]. Tetsu Hagané, 1994, 80: 855(鈴木信一, 石井伸幸, 土田豊. 高張力鋼の拡散性水素の挙動に及ぼす塑性歪の影響[J]. 鉄と鋼, 1994, 80: 855)
[26] Zhao J W, Jiang Z Y, Lee C S.Effects of tungsten on the hydrogen embrittlement behaviour of microalloyed steels[J]. Corros. Sci., 2014, 82: 380
[27] Lee S M, Park I J, Jung J G, et al.The effect of Si on hydrogen embrittlement of Fe-18Mn-0.6C-xSi twinning-induced plasticity steels[J]. Acta Mater., 2016, 103: 264
[28] Shi J, Jun H, Wang C, et al.Ultrafine grained duplex structure developed by ART-annealing in cold rolled medium-Mn steels[J]. J. Iron Steel Res. Int., 2014, 21: 208
[29] Zhan W, Cao W Q, Hu J, et al.Intercritical rolling induced ultrafine lamellar structure and enhanced mechanical properties of medium-Mn steel[J]. J. Iron Steel Res. Int., 2014, 21: 551
[30] Takagi S, Toji Y, Yoshino M, et al.Hydrogen embrittlement resistance evaluation of ultra high strength steel sheets for automobiles[J]. ISIJ Int., 2012, 52: 316
[31] Matsuoka S, Homma N, Tanaka H, et al.Effect of hydrogen on the tensile properties of 900 MPa-class JIS-SCM435 low-alloy-steel for use in storage cylinder of hydrogen station[J]. J. Jpn. Inst. Met., 2006, 70: 1002(松岡三郎, 本間紳浩, 田中裕之等. 900 MPa級低合金鋼SCM435の引張特性に及ぼす水素の影響[J]. 日本金属学会誌, 2006, 70: 1002)
[32] Michler T, Naumann J.Microstructural aspects upon hydrogen environment embrittlement of various bcc steels[J]. Int. J. Hydrogen Energy, 2010, 35: 821
[33] Chen J, Li C J, Zhang S H.Hydrogen embrittlement of cold drawn ferrite +martensite dual-phase steel[J]. J. Univ. Sci. Technol. Beijing, 1990, 12: 339(陈俊, 李承基, 章守华. 冷拔变形(F+M)型双相钢的氢脆[J]. 北京科技大学学报, 1990, 12: 339)
[34] Li X F, Wang Y F, Zhang P, et al.Effect of pre-strain on hydrogen embrittlement of high strength steels[J]. Mater. Sci. Eng., 2014, A616: 116
[35] Zhu X, Zhang K, Li W, et al.Effect of retained austenite stability and morphology on the hydrogen embrittlement susceptibility in quenching and partitioning treated steels[J]. Mater. Sci. Eng., 2016, A658: 400
[36] Chan S L I, Lee H L, Yang J R. Effect of retained austenite on the hydrogen content and effective diffusivity of martensitic structure[J]. Metall. Trans., 1991, 22A: 2579
[37] Sun Y W, Chen J Z, Liu J.Study on hydrogen embrittlement susceptibility of 1000 MPa grade 0Cr16Ni5Mo steel[J]. Acta Metall. Sin., 2015, 51: 1315(孙永伟, 陈继志, 刘军. 1000 MPa级0Cr16Ni5Mo钢的氢脆敏感性研究[J]. 金属学报, 2015, 51: 1315)
[38] Xu P G, Yin J, Zhang S Y.Tensile deformation behavior of hydrogen charged ultrahigh strength steel studied by in situ neutron diffraction[J]. Acta Metall. Sin., 2015, 51: 1297(徐平光, 殷匠, 张书彦. 充氢超高强度钢拉伸变形的原位中子衍射研究[J]. 金属学报, 2015, 51: 1297)
[39] Wang C, Xu H F, Huang C X, et al.Evolution of ART-annealed microstructure and partition behavior of manganese in medium manganese steel[J]. J. Iron Steel Res. Int., 2016, 28(4): 38(王昌, 徐海峰, 黄崇湘等. 中锰钢逆相变退火组织的演变及锰的配分行为[J]. 钢铁研究学报, 2016, 28(4): 38)
[40] Oudriss A, Creus J, Bouhattate J, et al.Grain size and grain-boundary effects on diffusion and trapping of hydrogen in pure nickel[J]. Acta Mater., 2012, 60: 6814
[41] Bai Y, Momotani Y, Chen M C, et al.Effect of grain refinement on hydrogen embrittlement behaviors of high-Mn TWIP steel[J]. Mater. Sci. Eng., 2016, A651: 935
[42] Hui W J, Dong H, Weng Y Q, et al.Delayed fracture behavior of ultrafine grained high strength steel[J]. Acta Metall. Sin., 2004, 40: 561(惠卫军, 董瀚, 翁宇庆等. 超细晶粒超强度钢的延迟断裂行为[J]. 金属学报, 2004, 40: 561)
[1] 马晋遥,王晋,赵云松,张剑,张跃飞,李吉学,张泽. 一种第二代镍基单晶高温合金1150 ℃原位拉伸断裂机制研究[J]. 金属学报, 2019, 55(8): 987-996.
[2] 刘耀鸿,王朝辉,刘轲,李淑波,杜文博. Er对Mg-5Zn-xEr镁合金热裂敏感性的影响[J]. 金属学报, 2019, 55(3): 389-398.
[3] 田亚强,田耕,郑小平,陈连生,徐勇,张士宏. 淬火配分贝氏体钢不同位置残余奥氏体C、Mn元素表征及其稳定性[J]. 金属学报, 2019, 55(3): 332-340.
[4] 邵成伟, 惠卫军, 张永健, 赵晓丽, 翁宇庆. 一种新型高强度高塑性冷轧中锰钢的组织和力学性能[J]. 金属学报, 2019, 55(2): 191-201.
[5] 姚彦桃, 陈礼清, 王文广. 原位反应浸渗法制备(B4C+Ti)混杂增强Mg及AZ91D复合材料及其阻尼性能[J]. 金属学报, 2019, 55(1): 141-148.
[6] 阳锋, 罗海文, 董瀚. 退火温度对冷轧7Mn钢拉伸行为的影响及模拟研究[J]. 金属学报, 2018, 54(6): 859-867.
[7] 翟斌, 周凯, 吕鹏, 王海鹏. 自由落体条件下Ti-6Al-4V合金微液滴的快速凝固研究[J]. 金属学报, 2018, 54(5): 824-830.
[8] 康慧君, 李金玲, 王同敏, 郭景杰. 定向凝固Al-Mn-Be合金初生金属间化合物相生长行为及力学性能[J]. 金属学报, 2018, 54(5): 809-823.
[9] 李金富, 周尧和. 液态金属深过冷快速凝固过程中初生固相的重熔[J]. 金属学报, 2018, 54(5): 627-636.
[10] 马歌, 左秀荣, 洪良, 姬颖伦, 董俊媛, 王慧慧. 深海用X70管线钢焊接接头腐蚀行为研究[J]. 金属学报, 2018, 54(4): 527-536.
[11] 熊守美, 杜经莲, 郭志鹏, 杨满红, 吴孟武, 毕成, 曹永友. 镁合金压铸过程界面传热行为及凝固组织结构的表征与模拟研究[J]. 金属学报, 2018, 54(2): 174-192.
[12] 李斌, 林小辉, 李瑞, 张国君, 李来平, 张平祥. 不同B含量Mo-Si-B合金的高温抗氧化性能[J]. 金属学报, 2018, 54(12): 1792-1800.
[13] 于菁, 王继杰, 倪丁瑞, 肖伯律, 马宗义, 潘兴龙. 电子束熔丝沉积快速成形2319铝合金的微观组织与力学性能[J]. 金属学报, 2018, 54(12): 1725-1734.
[14] 梅益, 孙全龙, 喻丽华, 王传荣, 肖华强. 基于GA-ELM的铝合金压铸件晶粒尺寸预测[J]. 金属学报, 2017, 53(9): 1125-1132.
[15] 李天瑞, 刘国怀, 徐莽, 牛红志, 付天亮, 王昭东, 王国栋. Ti-43Al-4Nb-1.5Mo合金包套锻造与热处理过程的微观组织及高温拉伸性能[J]. 金属学报, 2017, 53(9): 1055-1064.