Please wait a minute...
金属学报  2018, Vol. 54 Issue (6): 935-942    DOI: 10.11900/0412.1961.2017.00422
  本期目录 | 过刊浏览 |
厚度对Bi薄膜表面特性和电学性质的影响
董彩虹1, 刘永利2, 祁阳2()
1 东北大学理学院 沈阳 110819
2 东北大学材料科学与工程学院 沈阳 110819
Effect of Thickness on the Surface and Electronic Properties of Bi Film
Caihong DONG1, Yongli LIU2, Yang QI2()
1 College of Science, Northeastern University, Shenyang 110819, China
2 School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
引用本文:

董彩虹, 刘永利, 祁阳. 厚度对Bi薄膜表面特性和电学性质的影响[J]. 金属学报, 2018, 54(6): 935-942.
Caihong DONG, Yongli LIU, Yang QI. Effect of Thickness on the Surface and Electronic Properties of Bi Film[J]. Acta Metall Sin, 2018, 54(6): 935-942.

全文: PDF(2586 KB)   HTML
摘要: 

基于第一性原理计算方法研究了厚度对(00l)和(012)取向Bi薄膜稳定性、相变及导电性的影响。计算结果表明,随着厚度的增加,(00l)取向Bi薄膜稳定性增强,且薄膜偶数层稳定性优于奇数层;(012)取向Bi薄膜稳定性随着厚度的增加而降低,且在层数为4时,表面能与偶数层(00Ɩ)取向的薄膜相当,预示二者在该厚度时较易发生相变,分析认为与薄膜加厚过程中表面态的影响有关。随着厚度的增加,(00Ɩ)和(012)取向的Bi薄膜表现出从半导体转变为金属的特性。

关键词 Bi薄膜厚度稳定性相变导电性第一性原理计算    
Abstract

Bismuth and its alloys exhibit a number of peculiarities and mysterious features due to its three-dimensional (3D) hexagonal crystal, and have attracted the interest of many researchers for many years. Currently, the trivial-to-topological and semimetal-semiconductor transitions have been focused, as the result of its semi-metallic and large spin-orbit coupling. The binary compounds of Bi2M3 and binary alloys BixM1-x (M=Se, Sb and Te) are found to be 3D topological insulators, as the result of small band gap and large spin-orbit coupling in Bi crystals and Bi compounds, which make these crystals topologically important. In the case of Bi films, strong spin-orbit (SO) coupling interaction is also a fundamental mechanism to induce the Z2 topology. Recently, ultrathin Bi films have also been theoretically predicted to be an elemental two-dimensional topological insulator. And, all the ultrathin Bi(111) films are characterized by a nontrivial Z2 number independent of the film thickness. In the past few years, ultrathin films of Bi with a thickness down to several BLs (bilayers) on Si substrate have been prepared in experiments, finding that thicknesses have an effect on the properties of Bi films. However, the effect of thickness on films had not be studied for microscopic mechanism experimentally in detail. In this work, the effects of thickness on the surface and electronic properties of (00Ɩ) and (012) oriented films of Bi using the first-principles method were studied. With the increase of thickness, (00Ɩ) oriented Bi films became more stable, and the film of the even-numbered layers was more stable than that of the odd-numbered layer. However, the (012) oriented Bi films presented totally different behavior comparing with the (00Ɩ) oriented Bi film. The stabilities of (012) oriented film became less stable as the thickness increased, and possessed the approximated surface energy of even-numbered layers (00Ɩ) oriented Bi films when their layer numbers were closed to four. Further analysis of the cohesive energy, geometry structure and electronic band structures showed that, all the thin films presented the transition from semi-conductors to semi-metal or metal as the thickness increases.

Key wordsBi film    thickness    stability    transition    electrical conductivity    first-principles calculation
收稿日期: 2017-10-10     
ZTFLH:  O484.4  
作者简介:

作者简介 董彩虹,女,1989年,硕士

Parameter Present Ref. [27] Experiment[20]
a 0.460 0.464 0.4546
b 0.460 0.464 0.4546
c 1.210 1.217 1.1863
表1  本工作计算所得Bi晶格参数与优化及实验结果对比[20,27]
图1  Bi晶体结构图、Brillouin区示意图及带隙与能带图
图2  Bi(00Ɩ)和(012)取向的表面能随厚度变化的曲线图
图3  Bi(00Ɩ)取向原子构型
Distance / nm 1 BL 2 BL 3 BL 4 BL 5 BL 6 BL
Δd1,2 0 -0.00250 -0.00330 -0.00320 -0.00223 -0.00325
Δd2,3 0.0165 0.0177 0.0174 0.0160 0.0175
Δd3,4 -0.00270 -0.00308 -0.00272 -0.00283 -0.00263
Δd4,5 0.0177 0.0169 0.01406 0.0159
Δd5,6 -0.00330 -0.00272 -0.00259 -0.00237
Δd6,7 0.0174 0.0141 0.0150
Δd7,8 -0.00320 -0.00283 -0.00237
Δd8,9 0.0160 0.0159
Δd9,10 -0.00336 -0.00259
Δd10,11 0.0175
Δd11,12 -0.00328
Distance / nm 1 SL 3 SL 5 SL 7 SL 9 SL 11 SL
Δd1,2 0.0273 0.0146 0.00668 0.00223 -0.000152
Δd2,3 -0.0394 -0.0214 -0.0105 0.00777 0.00177
Δd3,4 0.0460 0.0320 0.0178 0.00934
Δd4,5 -0.0532 -0.0357 -0.0234 -0.0112
Δd5,6 0.0573 0.0453 0.0291
Δd6,7 -0.0610 -0.0502 -0.039
Δd7,8 0.0703 0.0573
Δd8,9 -0.0656 -0.05867
Δd9,10 0.0758
Δd10,11 -0.115
表2  1~6 BL偶数层和1~11 SL奇数层Bi薄膜弛豫后的结构参数
图4  Bi薄膜的原子结构图(箭头方向代表(012)方向)
图5  Bi(00Ɩ)取向偶数层和(012)取向薄膜的结合能和厚度关系的曲线图
图6  1~6 BL厚度Bi(00Ɩ)薄膜的电子能带图
图7  1~11 SL厚度Bi(00Ɩ)薄膜的电子能带图
图8  1~6 BL厚度Bi(012)薄膜的电子能带图
[1] Özçelik V O, Aktürk O Ü, Durgun E, et al.Prediction of a two-dimensional crystalline structure of nitrogen atoms[J]. Phys. Rev., 2015, 92B: 125420
[2] Li L K, Yu Y J, Ye G J, et al.Black phosphorus field-effect transistors[J]. Nat. Nanotechnol., 2014, 9: 372
[3] Zhu Z, Tománek D.Semiconducting layered blue phosphorus: A computational study[J]. Phys. Rev. Lett., 2014, 112: 176802
[4] Kamal C, Ezawa M.Arsenene: Two-dimensional buckled and puckered honeycomb arsenic systems[J]. Phys. Rev., 2015, 91B: 085423
[5] Aktürk O Ü, Özçelik V O, Ciraci S.Single-layer crystalline phases of antimony: Antimonenes[J]. Phys. Rev., 2015, 91B: 235446
[6] Zhang S L, Yan Z, Li Y F, et al.Atomically thin arsenene and antimonene: Semimetal-semiconductor and indirect-direct band-gap transitions[J]. Angew. Chem. Int. Ed., 2015, 54: 3112
[7] Ast C R, Höchst H.Electronic structure of a bismuth bilayer[J]. Phys. Rev., 2003, 67B: 113102
[8] Hofmann P, Gayone J E, Bihlmayer G, et al.Electronic structure and Fermi surface of Bi(100)[J]. Phys. Rev., 2005, 71B: 195413
[9] Hirahara T, Nagao T, Matsuda I, et al.Role of spin-orbit coupling and hybridization effects in the electronic structure of ultrathin Bi films[J]. Phys. Rev. Lett., 2006, 97: 146803
[10] Jnawali G, Klein C, Wagner T, et al.Manipulation of electronic transport in the Bi(111) surface state[J]. Phys. Rev. Lett., 2012, 108: 266804
[11] Yang J, Huang G Q, Zhu X F.Thickness evolution of phonon properties in ultrathin Bi(111) films[J]. Phys. Status Solidi, 2013, 250B: 1937
[12] Koroteev Y M, Bihlmayer G, Gayone J E, et al.Strong spin-orbit splitting on Bi surfaces[J]. Phys. Rev. Lett., 2004, 93: 046403
[13] Tichovolsky E J, Mavroides J G.Magnetoreflection studies on the band structure of bismuth-antimony alloys[J]. Solid State Commun., 1969, 7: 927
[14] Ohtsubo Y, Perfetti L, Goerbig M O, et al.Non-trivial surface-band dispersion on Bi(111)[J]. New J. Phys., 2013, 15: 033041
[15] Liu Z, Liu C X, Wu Y S, et al.Stable nontrivial Z2 topology in ultrathin Bi(111) films: A first-principles study[J]. Phys. Rev. Lett., 2011, 107: 136805
[16] Murakami S.Quantum spin hall effect and enhanced magnetic response by spin-orbit coupling[J]. Phys. Rev. Lett., 2006, 97: 236805
[17] Wada M, Murakami S, Freimuth F, et al.Localized edge states in two-dimensional topological insulators: Ultrathin Bi films[J]. Phys. Rev., 2011, 83B: 121310
[18] Sun J, Mikkelsen A, Jensen M F, et al.Structural determination of the Bi(110) semimetal surface by LEED analysis and ab initio calculations[J]. Phys. Rev., 2006, 74B: 245406
[19] Koroteev Y M, Bihlmayer G, Chulkov E V, et al.First-principles investigation of structural and electronic properties of ultrathin Bi films[J]. Phys. Rev., 2008, 77B: 045428
[20] Nagao T, Sadowski J T, Saito M, et al.Nanofilm allotrope and phase transformation of ultrathin Bi film on Si(111)-7×7[J]. Phys. Rev. Lett., 2004, 93: 105501
[21] Krenzer B, Hanisch-Blicharski A, Schneider P, et al.Phonon confinement effects in ultrathin epitaxial bismuth films on silicon studied by time-resolved electron diffraction[J]. Phys. Rev., 2009, 80B: 024307
[22] Kresse G, Furthmüller J.Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Phys. Rev., 1996, 54B: 11169
[23] Aguilera I, Friedrich C, Blügel S.Electronic phase transitions of bismuth under strain from relativistic self-consistent GW calculations[J]. Phys. Rev., 2015, 91B: 125129
[24] Blöchl P E.Projector augmented-wave method[J]. Phys. Rev., 1994, 50B: 17953
[25] Perdew J P, Burke K, Ernzerhof M.Generalized gradient approximation made simple[J]. Phys. Rev. Lett., 1996, 77: 3865
[26] Qi J S, Shi D N, Zhao J J, et al.Stable structures and electronic properties of the oriented Bi nanowires and nanotubes from first-principle calculations[J]. J. Phys. Chem., 2008, 112C: 10746
[27] Aktürk E, Aktürk O Ü, Ciraci S.Single and bilayer bismuthene: Stability at high temperature and mechanical and electronic properties[J]. Phys. Rev., 2016, 94B: 014115
[28] Mönig H, Sun J, Koroteev Y M, et al.Structure of the (111) surface of bismuth: LEED analysis and first-principles calculations[J]. Phys. Rev., 2005, 72B: 085410
[29] Hirahara T, Nagao T, Matsuda I, et al.Quantum well states in ultrathin Bi films: angle-resolved photoemission spectroscopy and first-principles calculations study[J]. Phys. Rev., 2007, 75B: 035422
[1] 白佳铭, 刘建涛, 贾建, 张义文. WTa型粉末高温合金的蠕变性能及溶质原子偏聚[J]. 金属学报, 2023, 59(9): 1230-1242.
[2] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] 王磊, 刘梦雅, 刘杨, 宋秀, 孟凡强. 镍基高温合金表面冲击强化机制及应用研究进展[J]. 金属学报, 2023, 59(9): 1173-1189.
[4] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[5] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[6] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[7] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[8] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[9] 姜江, 郝世杰, 姜大强, 郭方敏, 任洋, 崔立山. NiTi-Nb原位复合材料的准线性超弹性变形[J]. 金属学报, 2023, 59(11): 1419-1427.
[10] 李赛, 杨泽南, 张弛, 杨志刚. 珠光体-奥氏体相变中扩散通道的相场法研究[J]. 金属学报, 2023, 59(10): 1376-1388.
[11] 李小兵, 潜坤, 舒磊, 张孟殊, 张金虎, 陈波, 刘奎. W含量对Ti-42Al-5Mn-xW合金相转变行为的影响[J]. 金属学报, 2023, 59(10): 1401-1410.
[12] 温冬辉, 姜贝贝, 王清, 李相伟, 张鹏, 张书彦. MoNb改性FeCrAl不锈钢高温组织演变和力学性能[J]. 金属学报, 2022, 58(7): 883-894.
[13] 任师浩, 刘永利, 孟凡顺, 祁阳. 应变工程中Bi(111)薄膜的半导体-半金属转变及其机理[J]. 金属学报, 2022, 58(7): 911-920.
[14] 孙毅, 郑沁园, 胡宝佳, 王平, 郑成武, 李殿中. 3Mn-0.2C中锰钢形变诱导铁素体动态相变机理[J]. 金属学报, 2022, 58(5): 649-659.
[15] 李伟, 贾兴祺, 金学军. 高强韧QPT工艺的先进钢组织调控和强韧化研究进展[J]. 金属学报, 2022, 58(4): 444-456.