Please wait a minute...
金属学报  2018, Vol. 54 Issue (6): 927-934    DOI: 10.11900/0412.1961.2017.00406
  本期目录 | 过刊浏览 |
双脉冲磁控溅射峰值靶电流密度对TiN薄膜结构与力学性能的影响
时惠英, 杨超(), 蒋百灵, 黄蓓, 王迪
西安理工大学材料科学与工程学院 西安 710048
Influences of Target Peak Current Density on the Microstructure and Mechanical Properties of TiN Films Deposited by Dual Pulsed Power Magnetron Sputtering
Huiying SHI, Chao YANG(), Bailing JIANG, Bei HUANG, Di WANG
School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China
引用本文:

时惠英, 杨超, 蒋百灵, 黄蓓, 王迪. 双脉冲磁控溅射峰值靶电流密度对TiN薄膜结构与力学性能的影响[J]. 金属学报, 2018, 54(6): 927-934.
Huiying SHI, Chao YANG, Bailing JIANG, Bei HUANG, Di WANG. Influences of Target Peak Current Density on the Microstructure and Mechanical Properties of TiN Films Deposited by Dual Pulsed Power Magnetron Sputtering[J]. Acta Metall Sin, 2018, 54(6): 927-934.

全文: PDF(5907 KB)   HTML
摘要: 

自主研发了双脉冲磁控溅射技术,提出在一个脉冲周期内电流呈阶梯式上升的双脉冲电场设计理念,通过对2个脉冲阶段持续时间和峰值靶电流密度的调配,既满足提高镀料粒子动能与离化率以制备高性能薄膜的工艺要求,又达到增加脉冲持续时间以提高薄膜沉积速率的效能目标。采用双脉冲磁控溅射技术,在后期脉冲阶段的不同峰值靶电流密度下制备4组TiN薄膜,研究了峰值靶电流密度对薄膜微观结构和力学性能的影响。结果表明,将峰值靶电流密度提高至0.87 A/cm2时,所制备的TiN薄膜呈现出颗粒细小且致密的组织,平均晶粒尺寸为17 nm。同时,薄膜的显微硬度和膜基结合力可分别达29.5 GPa和30.0 N。

关键词 TiN薄膜双脉冲磁控溅射技术双脉冲电场峰值靶电流密度力学性能    
Abstract

The low kinetic energy and low ionization rate of deposited particle of traditional magnetron sputtering led to low density and poor adhesion of TiN film. The peak current density between cathodic target and anodic chamber was increased several times through the adoption of pulsed power supply mode with low duty cycle, which further enhanced kinetic energy and ionization rate of deposited particle. But the average deposition rate of thin film was significantly reduced. Therefore, a design concept of dual pulsed electric field mode was proposed, which allowed to adjust duration time and target peak current density of the dual pulses. It not only enhanced kinetic energy and ionization rate of deposited particle to satisfy the demand of fabrication of high performance film, but also increased the duration time of pulse to achieve high average deposition rate. In the manuscript, TiN films were deposited by dual pulsed power magnetron sputtering with different target peak current densities of the second pulse stage. The microstructure and mechanical properties of TiN films were characterized using XRD, SEM, nanoindentation and microscratch test. It was found that the TiN film deposited under target peak current density of 0.87 A/cm2 exhibited finely dense microstructure with average grain size of 17 nm. Additionally, the hardness and film-substrate adhesion of such film were as high as 29.5 GPa and 30.0 N, respectively.

Key wordsTiN film    dual pulsed power magnetron sputtering    dual pulsed electric field    target peak current density    mechanical property
收稿日期: 2017-09-25     
ZTFLH:  TG43  
基金资助:国家自然科学基金项目No.51571114
作者简介:

作者简介 时惠英,女,1959年生,教授

图1  双脉冲磁控溅射系统示意图和双脉冲电场电流波形图
Sample No. d / % D1 / ms D2 / ms Pa1 / W Pa2 / W Ip2 / A id2 / (Acm-2) Ts / ℃
1 40, 40 8 8 300 2200 10.0 0.27 50.9
2 40, 30 8 6 300 2200 15.0 0.41 60.6
3 40, 20 8 4 300 2200 22.5 0.61 63.9
4 40, 10 8 2 300 2200 32.2 0.87 84.5
表1  不同峰值靶电流密度下制备TiN薄膜的工艺参数
图2  TiN薄膜的表面和截面形貌的SEM像
图3  TiN薄膜的平均和实际沉积速率
图4  TiN薄膜的XRD谱
Sample No. H / GPa E / GPa H/E λN/Ti Lc / N
1 10.2 200.6 0.050 1.14 13.2
2 12.5 237.9 0.053 1.15 22.5
3 23.6 284.3 0.083 1.13 26.6
4 29.5 352.4 0.084 1.14 30.0
表2  TiN薄膜的力学性能、N/Ti原子比和临界载荷
图5  TiN薄膜划痕形貌的OM像
[1] Zhang L Q, Yang H S, Pang X L, et al.Microstructure, residual stress, and fracture of sputtered TiN films[J]. Surf. Coat. Technol., 2013, 224: 120
[2] He C L, Zhang J L, Wang J M, et al.Effect of structural defects on corrosion initiation of TiN nanocrystalline films[J]. Appl. Surf. Sci., 2013, 276: 667
[3] Craciun D, Stefan N, Socol G, et al.Very hard TiN thin films grown by pulsed laser deposition[J]. Appl. Surf. Sci., 2012, 260: 2
[4] Kelly P J, Arnell R D.Magnetron sputtering: A review of recent developments and applications[J]. Vacuum, 2000, 56: 159
[5] Weis H, Müggenburg T, Grosse P, et al.Advanced characterization tools for thin films in low-E systems[J]. Thin Solid Films, 1999, 351: 184
[6] Siemroth P, Schülke T.Copper metallization in microelectronics using filtered vacuum arc deposition-principles and technological development [J]. Surf. Coat. Technol., 2000, 133-134: 106
[7] Se J H, Kang T S, Noh D Y.Epitaxial and island growth of Ag/Si (001) by RF magnetron sputtering[J]. J. Appl. Phys., 1997, 81: 6716
[8] Li X Y, Wu W W, Dong H S.Microstructural characterisation of carbon doped CrAlTiN nanoscale multilayer coatings[J]. Surf. Coat. Technol., 2011, 205: 3251
[9] Christou C, Barber Z H.Ionization of sputtered material in a planar magnetron discharge[J]. J. Vac. Sci. Technol., 2000, 18A: 2897
[10] Ricard A, Nouvellon C, Konstantinidis S, et al.Density and temperature in an inductively amplified magnetron discharge for titanium deposition[J]. J. Vac. Sci. Technol., 2002, 20A: 1488
[11] Konstantinidis S, Ricard A, Ganciu M, et al.Measurement of ionic and neutral densities in amplified magnetron discharges by pulsed absorption spectroscopy[J]. J. Appl. Phys., 2004, 95: 2900
[12] Yang C, Jiang B L, Liu Z, et al.Nanocrystalline titanium films deposited via thermal-emission-enhanced magnetron sputtering[J]. Thin Solid Films, 2015, 597: 117
[13] Lin J L, Moore J J, Sproul W D, et al.The structure and properties of chromium nitride coatings deposited using dc, pulsed dc and modulated pulse power magnetron sputtering[J]. Surf. Coat. Technol., 2010, 204: 2230
[14] Arnell R D, Kelly P J, Bradley J W. Recent developments in pulsed magnetron sputtering [J]. Surf. Coat. Technol., 2004, 188-189: 158
[15] Kouznetsov V, Macák K, Schneider J M, et al.A novel pulsed magnetron sputter technique utilizing very high target power densities[J]. Surf. Coat. Technol., 1999, 122: 290
[16] Tian M B.Thin Film Technologies and Materials [M]. Beijing: Tsinghua University Press, 2006: 132(田民波. 薄膜技术与薄膜材料 [M]. 北京: 清华大学出版社, 2006: 132)
[17] Yang K.The research on TiN films deposited by magnetron sputtering [D]. Nanjing: Southeast University, 2006(杨凯. 反应磁控溅射法制备TiN薄膜的研究 [D]. 南京: 东南大学, 2006)
[18] Yeh T S, Wu J M, Hu L J.The properties of TiN thin films deposited by pulsed direct current magnetron sputtering[J]. Thin Solid Films, 2008, 516: 7294
[19] Cullity B D, Stock S R.Elements of X-Ray Diffraction[M]. 3rd Ed., London: Prentice-Hall Inc., 2001: 167
[20] Jenkins R, Snyder R.Introduction to X-Ray Powder Diffractometry[M]. New York: Wiley-Interscience, 1996: 89
[21] Fujimura N, Nishihara T, Goto S, et al.Control of preferred orientation for ZnOx films: Control of self-texture[J]. J. Cryst. Growth, 1993, 130: 269
[22] Gu M, Yang F Z, Huang L, et al.XRD study on highly preferred orientation Cu electrodeposit[J]. Electrochemistry, 2002, 8: 282(辜敏, 杨防祖, 黄令等. 高择优取向Cu电沉积层的XRD研究[J]. 电化学, 2002, 8: 282)
[23] Zhao Y H, Guo C Q, Yang W J, et al.TiN films deposition inside stainless-steel tubes using magnetic field-enhanced arc ion plating[J]. Vacuum, 2015, 112: 46
[24] Luo Q S, Yang S, Cooke K E.Hybrid HIPIMS and DC magnetron sputtering deposition of TiN coatings: Deposition rate, structure and tribological properties[J]. Surf. Coat. Technol., 2013, 236: 13
[25] Lin J L, Moore J J, Sproul W D, et al.Modulated pulse power sputtered chromium coatings[J]. Thin Solid Films, 2009, 518: 1566
[26] Nia N S, Savall C, Creus J, et al.On the implication of solute contents and grain boundaries on the Hall-Petch relationship of nanocrystalline Ni-W alloys[J]. Mater. Sci. Eng., 2016, A678: 204
[27] Kohlscheen J, Stock H R, Mayr P. Chemical bonding in magnetron sputtered TiNx coatings and its relation to diamond turnability [J]. Surf. Coat. Technol., 2001, 142-144: 992
[28] Stallard J, Poulat S, Teer D G.The study of the adhesion of a TiN coating on steel and titanium alloy substrates using a multi-mode scratch tester[J]. Tribol. Int., 2006, 39: 159
[29] Lin J L, Moore J J, Mishra B, et al.Effect of asynchronous pulsing parameters on the structure and properties of CrAlN films deposited by pulsed closed field unbalanced magnetron sputtering (P-CFUBMS)[J]. Surf. Coat. Technol., 2008, 202: 1418
[30] Laing K, Hampshire J, Teer D, et al.The effect of ion current density on the adhesion and structure of coatings deposited by magnetron sputter ion plating[J]. Surf. Coat. Technol., 1999, 112: 177
[31] Heinke W, Leylan A, Matthews A, et al.Evaluation of PVD nitride coatings, using impact, scratch and Rockwell-C adhesion test[J]. Thin Solid films, 1995, 270: 431
[1] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[4] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[7] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[9] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[10] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[11] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[12] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[13] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[14] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.
[15] 王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.