Please wait a minute...
金属学报  2018, Vol. 54 Issue (7): 999-1009    DOI: 10.11900/0412.1961.2017.00384
  本期目录 | 过刊浏览 |
分层厚度对选区激光熔化成形Ti-5Al-2.5Sn合金组织与性能的影响规律
高飘, 魏恺文, 喻寒琛, 杨晶晶, 王泽敏(), 曾晓雁
华中科技大学武汉光电国家实验室 武汉 430074
Influence of Layer Thickness on Microstructure and Mechanical Properties of Selective Laser Melted Ti-5Al-2.5Sn Alloy
Piao GAO, Kaiwen WEI, Hanchen YU, Jingjing YANG, Zemin WANG(), Xiaoyan ZENG
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
引用本文:

高飘, 魏恺文, 喻寒琛, 杨晶晶, 王泽敏, 曾晓雁. 分层厚度对选区激光熔化成形Ti-5Al-2.5Sn合金组织与性能的影响规律[J]. 金属学报, 2018, 54(7): 999-1009.
Piao GAO, Kaiwen WEI, Hanchen YU, Jingjing YANG, Zemin WANG, Xiaoyan ZENG. Influence of Layer Thickness on Microstructure and Mechanical Properties of Selective Laser Melted Ti-5Al-2.5Sn Alloy[J]. Acta Metall Sin, 2018, 54(7): 999-1009.

全文: PDF(6969 KB)   HTML
摘要: 

研究了分层厚度对选区激光熔化(SLM)技术成形Ti-5Al-2.5Sn (TA7)钛合金试样致密度、显微组织和力学性能的影响规律。结果表明:在激光功率和扫描间距一定的条件下,当分层厚度≤40 μm时,致密度随激光体能量密度的下降不断提高;当分层厚度>40 μm时,致密度则随激光体能量密度的下降先升高后降低。随分层厚度的增大和扫描速率的降低,SLM成形过程中的冷却速率逐步下降,当冷却速率低于6.8×107 K/s时,显微组织由针状马氏体α′逐渐向岛状αm转变。通过优化工艺参数,在所有分层厚度(20~60 μm)下均能成形致密的TA7试样,其显微硬度、屈服强度和断裂强度超越铸件和锻件;且当分层厚度≤40 μm时,韧塑性超越铸件,达到锻件水平。成功探索出能够兼顾TA7样品成形效率、冶金质量及力学性能的优选分层厚度及SLM工艺参数组合。

关键词 选区激光熔化分层厚度Ti-5Al-2.5Sn合金显微组织力学性能    
Abstract

As an additive manufacturing technology, selective laser melting (SLM) process can solve the manufacturing difficulty of Ti-5Al-2.5Sn (TA7) easily. But the low building efficiency of SLM retards its wide applications in aviation, petrochemical and other fields. In order to solve the above problem, the influence of layer thickness on relative density, microstructure and mechanical properties of SLMed TA7 samples were studied in this work. The results show that when the laser power and hatching space are constant, the relative density gradually increases with the decrease of the laser volume energy density under the layer thicknesses less than or equal to 40 μm, whereas first increases and then declines with the decrease of the laser volume energy density under the layer thicknesses larger than 40 μm. At the same time, with the increase of layer thickness and the decrease of scanning velocity, the cooling rate gradually decreases during the SLM processing, when the cooling rate is lower than 6.8×107 K/s, the microstructure will gradually transform from acicular martensite α' to massive αm. Through the optimization of SLM parameters, the dense TA7 bulk specimens with higher microhardnesses, yield strengths and ultimate strengths in comparison to the as-cast and deformed TA7 alloys can be obtained under all layer thicknesses (20~60 μm). While when the layer thicknesses are not larger than 40 μm, the ductility of the SLMed TA7 is also superior to that of the as-cast TA7 and comparable to that of the deformed TA7. Finally, the optimal layer thickness and combination of SLM process parameters are successfully determined to balance the building efficiency, metallurgical quality and mechanical properties of the TA7 alloy parts.

Key wordsselective laser melting    layer thickness    Ti-5Al-2.5Sn alloy    microstructure    mechanical property
收稿日期: 2017-09-13     
ZTFLH:  TN249  
基金资助:国家重点基础研究发展计划项目No.613281,中央高校基本科研业务费项目No.2016XYZD005,国防科工局技术基础科研项目No.JSCG2016204B001,以及民用航天预研项目《液体火箭发动机核心构件增材制造技术研究》
作者简介:

作者简介 高 飘,女,1994年生,博士生

Parameter Value Unit
Laser power (P) 200 W
Scanning velocity (V) 400, 600, 800, 1000 mms-1
Hatch spacing (S) 0.06, 0.08, 0.10 mm
Layer thickness (δ) 20, 30, 40, 50, 60 μm
Phase angle 90 °
表1  选区激光熔化成形工艺参数
图1  TA7合金粉末的SEM像和粒径分布
图2  不同分层厚度下致密度和激光体能量密度随工艺参数的变化
Sample No. δ / μm V / (mms-1) S / mm EV / (Jmm-3) Relative density / %
1 20 1000 0.08 125.00 99.95
2 30 1000 0.06 111.11 99.94
3 40 1000 0.08 62.50 99.92
4 50 800 0.08 62.50 99.76
5 60 800 0.06 69.44 99.38
表2  不同分层厚度下的最致密TA7试样及相关工艺参数
图3  针状α′马氏体组织的OM和SEM像以及相应位置的EDS分析
图4  针状α′+岛状αm混合组织的OM和SEM像以及相应位置的EDS分析
图5  岛状αm组织的OM和SEM像以及相应位置的EDS分析
图6  3类组织分别对应的TA7块体试样的XRD谱
图7  TA7试样的金相显微组织与工艺参数的关系图
图8  熔池直径随分层厚度和扫描速率的变化
图9  熔池冷却速率随分层厚度和扫描速率的变化
图10  5个不同分层厚度下最致密TA7试样的显微组织
图11  5个最致密TA7试样的显微硬度和拉伸性能随分层厚度的变化趋势
Processing method Microhardness Elongation Yield strength Ultimate strength
HV % MPa MPa
Deformed TA7[20,30] 300~331 8~20 680~730 765~930
As-cast TA7[20,31] 200~310 5~8 700~725 760~795
表3  传统加工工艺(锻造和铸造)成形的TA7合金的力学性能[20,30,31]
图12  5个不同分层厚度下最致密TA7拉伸试样断口形貌的SEM像
[1] Li Y K, Quan C Y, Lu S P, et al.Study on shape correction of the thin plate of TA15 titanium alloy by post weld heat treatment[J]. Acta Metall. Sin., 2016, 52: 281(李永奎, 权纯逸, 陆善平等. TA15钛合金薄壁焊接件热处理校形研究[J]. 金属学报, 2016, 52: 281)
[2] Zhang X Y, Zhao Y Q, Bai C G.Titanium Alloys and Applications [M]. Beijing: Chemical Industry Press, 2004: 82(张喜燕, 赵永庆, 白晨光. 钛合金及应用 [M]. 北京: 化学工业出版社, 2004: 82)
[3] Donachie M J.Titanium: A Technical Guide[M]. 2nd Ed., Materials Park, OH: ASM International, 2000: 11
[4] Huang W P, Yu H C, Yin J, et al.Microstructure and mechanical properties of K4202 cast nickel base superalloy fabricated by selective laser melting[J]. Acta Metall. Sin., 2016, 52: 1089(黄文普, 喻寒琛, 殷杰等. 激光选区熔化成形K4202镍基铸造高温合金的组织和性能[J]. 金属学报, 2016, 52: 1089)
[5] Zhang W Q, Zhu H H, Hu Z H, et al.Study on the selective laser melting of AlSi10Mg[J]. Acta Metall. Sin., 2017, 53: 918(张文奇, 朱海红, 胡志恒等. AlSi10Mg的激光选区熔化成形研究[J]. 金属学报, 2017: 53: 918)
[6] Wang Z M, Guan K, Gao M, et al.The microstructure and mechanical properties of deposited-IN718 by selective laser melting[J]. J. Alloys Compd., 2012, 513: 518
[7] Ma M M, Wang Z M, Wang D Z, et al.Control of shape and performance for direct laser fabrication of precision large-scale metal parts with 316L stainless steel[J]. Opt. Laser. Technol., 2013, 45: 209
[8] Yu H C, Yang J J, Yin J, et al.Comparison on mechanical anisotropies of selective laser melted Ti-6Al-4V alloy and 304 stainless steel[J]. Mater. Sci. Eng., 2017, A695: 92
[9] Yablokova G, Speirs M, Van Humbeeck J, et al.Rheological behavior of β-Ti and NiTi powders produced by atomization for SLM production of open porous orthopedic implants[J]. Powder Technol., 2015, 283: 199
[10] Zhou Y, Wen S F, Song B, et al.A novel titanium alloy manufactured by selective laser melting: Microstructure, high temperature oxidation resistance[J]. Mater. Des., 2016, 89: 1199
[11] Wei K W, Wang Z M, Zeng X Y.Preliminary investigation on selective laser melting of Ti-5Al-2.5Sn α-Ti alloy: From single tracks to bulk 3D components[J]. J. Mater. Process. Technol., 2017, 244: 73
[12] Ma M M, Wang Z M, Zeng X Y, et al.Layer thickness dependence of performance in high-power selective laser melting of 1Cr18Ni9Ti stainless steel[J]. J. Mater. Process. Technol., 2015, 215: 142
[13] Choi J, Chang Y.Characteristics of laser aided direct metal/material deposition process for tool steel[J]. Int. J. Mach. Tool. Man., 2005, 45: 597
[14] Shim D S, Baek G Y, Seo J S, et al.Effect of layer thickness setting on deposition characteristics in direct energy deposition (DED) process[J]. Opt. Laser. Technol., 2016, 86: 69
[15] Panda B N, Garg A, Shankhwar K.Empirical investigation of environmental characteristic of 3-D additive manufacturing process based on slice thickness and part orientation[J]. Measurement, 2016, 86: 293
[16] Aboulkhair N T, Maskery I, Tuck C, et al.On the formation of AlSi10Mg single track and layers in selective laser melting: Microstructure and nano-mechanical properties[J]. J. Mater. Process. Technol., 2016, 230: 88
[17] Chen G X, Zeng X Y.Design and development of equipment of selective laser melting rapid prototyping[J]. Mech. Design. Manuf., 2010, (8): 15(陈光霞, 曾晓雁. SLM激光快速成型设备的设计与开发[J]. 机械设计与制造, 2010, (8): 15)
[18] Chen G X, Zeng X Y.Design on SLM powder coating device[J]. Manuf. Technol. Mach. Tool, 2012, (3): 57(陈光霞, 曾晓雁. 选择性激光熔化激光快速成型铺粉装置设计[J]. 设计与研究, 2012, (3): 57)
[19] Zou W Z, Guo X G, Xie X Y, et al.Titanium Handbook [M]. Beijing: Chemical Industry Press, 2012: 338
[20] Wei K W, Wang Z M, Zeng X Y.Element loss of AZ91D magnesium alloy during selective laser melting process[J]. Acta Metall. Sin., 2016, 52: 184(魏恺文, 王泽敏, 曾晓雁. AZ91D镁合金在激光选区熔化成形中的元素烧损[J]. 金属学报, 2016, 52: 184)
[21] Krutha J P, Froyen L, Vaerenbergh J V, et al.Selective laser melting of iron-based powder[J]. J. Mater. Process. Technol., 2004, 149: 616
[22] King W E, Barth H D, Castillo V M, et al.Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing[J]. J. Mater. Process. Technol., 2014, 214: 2915
[23] Kamath C, El-Dasher B, Gallegos G F, et al.Density of additively-manufactured, 316LSS parts using laser powder-bed fusion at powers up to 400 W[J]. Int. J. Adv. Manuf. Technol., 2014, 74: 65
[24] Collings E W, Welsch G.Materials Properties Handbook: Titanium Alloys[M]. Materials Park, OH: ASM International, 1994: 289
[25] Alphons A A.Microstructure, texture and mechanical property evolution during additive manufacturing of Ti6Al4V alloy for aerospace applications [D]. Manchester, UK: The University of Manchester, 2012: 61
[26] Ahmed T, Rack H J.Phase transformations during cooling in α+β titanium alloys[J]. Mater. Sci. Eng., 1998, A243: 206
[27] Hofmeister W, Griffith M.Solidification in direct metal deposition by LENS processing[J]. JOM., 2001, 53(9): 30
[28] Zhang B C, Liao H L, Christian C.Microstructure evolution and density behavior of CP-Ti parts elaborated by self-developed vacuum selective laser melting system[J]. Appl. Surf. Sci., 2013, 279: 310
[29] Gu D D, Christian Y H, Wilhelm M, et al.Densification behavior, microstructure evolution, and wear performance of selective laser melting processed commercially pure titanium[J]. Acta Mater., 2012, 60: 3849
[30] Yan W Q, Dai L, Gui C B.In situ synthesis and hardness of TiC/Ti5Si3 composites on Ti-5A1-2.5Sn substrates by gas tungsten arc welding[J]. Int. J. Min. Met. Mater., 2013, 20: 284
[31] Boonruang C, Thong-on A. Tribological behavior of Ti-5Al-2.5Sn: Ti-10V-2Fe-3Al and Ti-38Al carburized via current heating technique withgraphite powders[J]. Mater. Trans., 2014, 55: 1073
[32] Shi K, Xie H S, Zhao J, et al.Influence of vacuum annealing on microstructure and properties of cast Ti-5Al-2.5Sn eli alloy welding sample[J]. Foundry., 2015, 64: 202(史昆, 谢华生, 赵军等. 真空退火对铸造Ti-5Al-2.5SnELI合金焊接试样组织与性能的影响[J]. 铸造, 2015, 64: 202)
[1] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[3] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[5] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[6] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[8] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[9] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[10] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[11] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[12] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[13] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[14] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[15] 李殿中, 王培. 金属材料的组织定制[J]. 金属学报, 2023, 59(4): 447-456.