Please wait a minute...
金属学报  2018, Vol. 54 Issue (7): 959-968    DOI: 10.11900/0412.1961.2017.00365
  本期目录 | 过刊浏览 |
钢包出钢末期漩涡抑制机理探究及防漩设计
王强1,2(), 王连钰1,3, 李宏侠1, 蒋佳伟1, 朱晓伟1,3, 郭占成2, 赫冀成1
1 东北大学材料电磁过程研究教育部重点实验室 沈阳 1108192
2 北京科技大学钢铁冶金新技术国家重点实验室 北京 1000833
3 东北大学冶金学院 沈阳 110819
Suppression Mechanism and Method of Vortex During Steel Teeming Process in Ladle
Qiang WANG1,2(), Lianyu WANG1,3, Hongxia LI1, Jiawei JIANG1, Xiaowei ZHU1,3, Zhancheng GUO2, Jicheng HE1
1 Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang 110819, China
2 State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, China
3 School of Metallurgy, Northeastern University, Shenyang 110819, China
引用本文:

王强, 王连钰, 李宏侠, 蒋佳伟, 朱晓伟, 郭占成, 赫冀成. 钢包出钢末期漩涡抑制机理探究及防漩设计[J]. 金属学报, 2018, 54(7): 959-968.
Qiang WANG, Lianyu WANG, Hongxia LI, Jiawei JIANG, Xiaowei ZHU, Zhancheng GUO, Jicheng HE. Suppression Mechanism and Method of Vortex During Steel Teeming Process in Ladle[J]. Acta Metall Sin, 2018, 54(7): 959-968.

全文: PDF(2302 KB)   HTML
摘要: 

为了抑制钢包出钢末期出现的漩涡卷渣现象,进而提高钢液的洁净度和钢材质量,从对漩涡形成影响较大的水口偏心率入手,通过数值模拟和水模型实验,重点分析了不同偏心率条件下漩涡的运动过程和速度场的变化规律。研究发现,通过改变出钢过程中漩涡形成时的速度场分布形式和速度值的大小,可以改变漩涡的运动轨迹和趋势,进而降低漩涡的临界高度,有效抑制漩涡的形成。在此基础上,设计出底部吹气的防漩方法,得到最佳的吹气流量和吹气孔位置。

关键词 洁净钢钢包出钢自由表面涡卷渣漩涡抑制机理    
Abstract

With the developments of science and technology, the performance of steel is required strictly and the quality of steel needs to improve continuously. In continuous casting process, there is an important flow phenomenon when the molten steel flows from ladle to tundish. It is that the rapidly rotating free surface vortex will form as the liquid level descending continuously. The surface vortex can cause the slag entrainment. In order to suppress slag entrainment by vortex during the steel teeming process, and to improve the cleanliness and quality of steel, the movement process of vortex and variation of flow field are studied through both numerical simulation and water model experiments. Since the eccentricity (eccentricity is the ratio of the nozzle distance and the ladle radius) has a large effect on the vortex formation, the vortex movement and flow field variation at different eccentricities are analyzed in details. And the mechanism of vortex suppression is found. It is that disturbing the velocity distribution of vortex formation or/and decreasing the tangential velocity value can suppress the movement and development of vortex. Thus the critical height of vortex can be decrease and the vortex can be availably suppressed. And then a method of vortex suppression is proposed according to this mechanism of vortex suppression. The method by blowing gas at the bottom of ladle is proposed. And the optimal gas flow rate and gas nozzle position are obtained.

Key wordsclean steel    steel teeming of ladle    free surface vortex    slag entrapment    suppression mechanism of vortex
收稿日期: 2017-08-30     
ZTFLH:  TF775  
基金资助:国家自然科学基金委员会-宝钢集团有限公司联合研究基金项目No.U1560207,北京科技大学钢铁冶金新技术国家重点实验室开放基金项目No.KF12-07
作者简介:

作者简介 王 强,男,1971年生,教授,博士

Material Density Dynamic viscosity Surface tension Temperature
kgm-3 Pas Nm-1 K
Steel 7000 5.3×10-3 1.6 1873
Ar 0.26 8.148×10-5 - 1873
Water 1000 1.003×10-3 0.0728 293
N2 1.167 1.753×10-5 - 293
表1  数值模拟和水模型中流体的物性参数
图1  模拟结果与实验结果[27]比较以及钢包内漩涡形成高度示意图
Type Top diameter of Bottom diameter of Ladle height Nozzle diameter Ladle
ladle / mm ladle / mm mm mm taper / (°)
Prototype 2166 1835 2850 54.8 3.3
Model 541.5 458.75 712.5 13.7 3.3
表2  钢包水模型和原型的尺寸
图2  实验装置示意图
图3  吹气孔位置示意图
图4  不同偏心率条件下0.05 m处不同时刻的涡量图
图5  不同高度处的切向速度
图6  临界高度随吹气流量的变化
图7  临界高度随吹气孔位置的变化
图8  不同吹气流量下切向速度随高度的变化
[1] Niclas A, Andrey K, Par G J.The effect of different non-metallic inclusions on the machinability of steels[J]. Materials, 2015, 8: 751
[2] Holappa L E K, Helle A S. Inclusion control in high-performance steels[J]. J. Mater. Process. Technol., 1995, 53: 177
[3] Zhang L F, Thomas B G.State of the art in the control of inclusions during steel ingot casting[J]. Metall. Mater. Trans., 2006, 37B: 733
[4] Tripathi N N, Nzotta M, Sandberg A, et al.Effect of ladle age on formation of non-metallic inclusions in ladle treatment[J]. Ironmak. Steelmak., 2004, 31: 235
[5] Beskow K, Tripathi N N, Nzotta M, et al.Impact of slag-refractory lining reactions on the formation of inclusions in steel[J]. Ironmak. Steelmak., 2004, 31: 514
[6] Zhang S J, Zhu M Y, Zhang Y L, et al.Study on mechanism of entrapment in slab continuous casting mould with high casting speed and argon blowing[J]. Acta Metall. Sin., 2006, 42: 1087(张胜军, 朱苗勇, 张永亮等. 高拉速吹氩板坯连铸结晶器内的卷渣机理研究[J]. 金属学报, 2006, 42: 1087)
[7] Riaz S, Mills K C, Bain K.Experimental examination of slag/refractory interface[J]. Ironmak. Steelmak., 2002, 29: 107
[8] Hassall G J, Bain K G, Jones N, et al.Modelling of ladle glaze interactions[J]. Ironmak. Steelmak., 2002, 29: 383
[9] Lei H, Zhu M Y, He J C.Mathematical modeling of slag entrapment in continuous casting mould[J]. Acta Metall. Sin., 2000, 36: 1113(雷洪, 朱苗勇, 赫冀成. 连铸结晶器内卷渣过程的数学模型[J]. 金属学报, 2000, 36: 1113)
[10] Piva M, Iglesias M, Bissio P, et al.Experiments on vortex funnel formation during drainage[J]. Physica, 2003, 329A: 1
[11] Sankaranarayanan R, Guthrie R I L. Slag entraining vortexing funnel formation during ladle teeming: Similarity criteria and scale-up relationships[J]. Ironmak. Steelmak., 2002, 29: 147
[12] Kuwana K, Hassan M I, Signh P K, et al.Scale-model experiment and numerical simulation of a steel teeming process[J]. Mater. Manuf. Process., 2008, 23: 407
[13] Hammerschmid P, Tacke K H, Popper H, et al.Vortex formation during drainage of metallurgical vessels[J]. Ironmak. Steelmak., 1984, 11: 332
[14] Sucker D, Reinecke J, Hage-Jewainski H.Flow investigations for melting metallurgical processes[J]. Stahl Eisen, 1985, 105: 765
[15] Lin R, Yan Z G, Liu T, et al.Modeling formation mechanism of vortex during steel casting in a 60 t LADLE[J]. Chin. J. Process. Eng., 2010, 10: 655(蔺瑞, 颜正国, 刘涛等. 60 t钢包浇注过程中汇流旋涡形成机理[J]. 过程工程学报, 2010, 10: 655)
[16] Pierre V.Récipient métallurgique de coulee [P]. France Pat, No2443892, 1978
[17] Dardick I I, Kapusta A K, Mikhailovich B M, et al.Methods and facilities for suppressing vortices arising in tundishes or ladles during their respective discharge [P]. Eur Pat, EP1791665, 2007
[18] Suh J W, Park J, Kim H, et al.Suppression of the vortex in ladle by static magnetic field[J]. ISIJ Int., 2001, 41: 689
[19] Ono-Nakazato H, Taguchi K, Usui T, et al.Prevention method of swirling flow generation in discharging liquid in the reactor vessel[J]. J. Jpn. Soc. Exp. Mech., 2007, 8: S147
[20] Mazzaferro G M, Piva M, Ferro S P, et al.Experimental and numerical analysis of ladle teeming process[J]. Ironmak. Steelmak., 2004, 31: 503
[21] Lin R, Yan Z G, Liu T, et al. Water modelling on the effect of trapezoidal nozzle on vortex during teeming in ladle [J]. Adv. Mater. Res., 2011, 295-297: 716
[22] Labate M D.Slag retaining device with vortex inhibitor [P]. US Pat, 4799650, 1989
[23] Huang Y, Ye S F, Su T S, et al.Technology of preventing slag down in casting process[J]. Jiangxi Metall, 1999, 19(6): 1(黄晔, 叶树峰, 苏天森等. 浇注过程的防下渣技术[J]. 江西冶金, 1999, 19(6): 1)
[24] Li H X, Wang Q, Lei H, et al.Mechanism analysis of free-surface vortex formation during steel teeming[J]. ISIJ Int., 2014, 54: 1592
[25] Li H X, Wang Q, Jiang J W, et al.Analysis of factors affecting free surface vortex formation during steel teeming[J]. ISIJ Int., 2016, 56: 94
[26] Centerra Resource park 10 Cavendish court Lebanon. User's Guide for Fluent version 6. 3, 2006
[27] Sankaranarayanan R, Guthrie R I L. Slag entraining vortexing funnel formation during ladle teeming: Similarity criteria and scale-up relationships[J]. Ironmak. Steelmak., 2002, 29: 147
[28] Jain A K, Ranga R, Kittur G, et al.Vortex formation at vertical pipe intake[J]. J. Hydraulics Division, 1978, 104: 1429
[29] Aubert J, Brito D, Nataf H C, et al.A systematic experimental study of rapidly rotating spherical convection in water and liquid gallium[J]. Phys. Earth Planet. Int., 2001, 128: 51
[1] 徐匡迪 肖丽俊 干勇 刘浏 王新华. 新一代洁净钢生产流程的理论解析[J]. 金属学报, 2012, 48(1): 1-10.
[2] 高翱 王强 李德军 柴海山 赵立佳 赫冀成. 电磁出钢系统中Fe-C合金的状态研究[J]. 金属学报, 2011, 47(2): 219-223.
[3] 高翱 王强 李德军 金百刚 王凯 赫冀成. 电磁引流技术的出钢效率及其影响因素[J]. 金属学报, 2010, 46(5): 634-640.
[4] 徐匡迪. 关于洁净钢的若干基本问题[J]. 金属学报, 2009, 45(3): 257-269.
[5] 张胜军; 朱苗勇; 张永亮; 郑淑国; 程乃良; 宋景欣 . 高拉速吹氩板坯连铸结晶器内的卷渣机理研究[J]. 金属学报, 2006, 42(10): 1087-1090 .
[6] 雷洪; 朱苗勇 . 连铸结晶器内卷渣过程的数学模型[J]. 金属学报, 2000, 36(10): 1113-1117 .