Please wait a minute...
金属学报  2018, Vol. 54 Issue (3): 377-384    DOI: 10.11900/0412.1961.2017.00326
  本期目录 | 过刊浏览 |
退火工艺对含Nb高强无取向硅钢组织及性能的影响
黄俊, 罗海文()
北京科技大学冶金与生态工程学院 北京 100083
Influence of Annealing Process on Microstructures, Mechanical and Magnetic Properties of Nb-Containing High-Strength Non-Oriented Silicon Steel
Jun HUANG, Haiwen LUO()
School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
全文: PDF(4904 KB)   HTML
摘要: 

研究了退火工艺对含Nb高强冷轧无取向硅钢组织、磁性能与力学性能的影响。退火温度升高与退火时间延长均可导致Nb在晶界处的偏聚减弱、富Nb析出相粒子的固溶与粗化,因此阻止晶界迁移的钉扎力降低,晶粒长大;富Nb相粒子粗化与晶粒长大均可降低铁损,但也同时使得强度显著降低。因此,含Nb高强冷轧无取向硅钢的磁性能与力学性能无法同时得到优化。当采用940 ℃保温270 s退火工艺后,Nb偏聚于该钢晶界并同时有大量富Nb相粒子析出,有效抑制了晶粒长大与γ织构的发展,可以在磁感和铁损尚未明显恶化的情况下,通过晶粒细化和析出强化有效提高该钢的屈服强度,达到该钢磁性能与力学性能的最佳匹配,此时磁感应强度B50为1.690 T,铁损P1.5/50为4.86 W/kg,P1.0/400为30.47 W/kg,屈服强度为505 MPa,断后伸长率为17.55%。

关键词 高强度无取向硅钢Nb再结晶磁性能力学性能    
Abstract

As the core material of transaction motor for electrical/hybrid vehicles, the non-oriented silicon steel (NOSS) sheets require not only the good magnetic properties, i.e. high permeability and low iron loss, but also high yield strength to resist the centrifugal force during the high speed rotation. In this work, Nb element was added into the conventional NOSS to improve the strength without sacrificing the good magnetic properties too much. The effects of annealing process on the microstructures, magnetic and mechanical properties of Nb-containing high-strength non-oriented cold-rolled silicon steel were studied. The increases of annealing temperature and time both lead to the reduced segreation of Nb at grain boundaries and the solution and ripening of precipitates, which means the decreased suppression on the migration of grain boundaries; thus, the recrystallized grains start to grow; particularly, the density of {111}<112> texture component may increase to deteriorate the magnetic flux density, B50. The best mechanical and magnetic properties cannot be achieved at the same time. The annealing process at 940 ℃ for 270 s could lead to the best combination of mechanical and magnetic properties, which include B50 of 1.69 T, the iron loss P1.5/50 of 4.86 W/kg and P1.0/400 of 30.47 W/kg, resulting from both the segregation of solute Nb at grain boundaries and the extensive precipitation which refrains the grain growth and development of harmful γ texture. Therefore, the yield strength is increased due to both grain refinement and precipitation strengthening without greatly sacrificing the permeability and iron loss.

Key wordshigh strength non-oriented silicon steel    niobium    recrystallization    magnetic property    mechanical property
收稿日期: 2017-08-01      出版日期: 2017-11-08
作者简介:

作者简介 黄 俊,男,1991年生,硕士生

引用本文:

黄俊, 罗海文. 退火工艺对含Nb高强无取向硅钢组织及性能的影响[J]. 金属学报, 2018, 54(3): 377-384.
Jun HUANG, Haiwen LUO. Influence of Annealing Process on Microstructures, Mechanical and Magnetic Properties of Nb-Containing High-Strength Non-Oriented Silicon Steel. Acta Metall, 2018, 54(3): 377-384.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2017.00326      或      http://www.ams.org.cn/CN/Y2018/V54/I3/377

图1  含Nb无取向硅钢经不同工艺退火后组织的OM像
图2  含Nb无取向硅钢经不同工艺退火后富Nb相粒子的形貌变化及热力学性质图
图3  含Nb无取向硅钢经不同工艺退火后Nb元素在钢中的分布图
图4  含Nb无取向硅钢经不同工艺退火后获得的工频铁损P1.5/50、高频铁损P1.0/400和磁感应强度B50
图5  含Nb无取向硅钢经不同工艺退火后的力学性能
Annealing process Average size of
ferrite grain / μm
Average size of
Nb-rich particle / nm
Volume fraction of particle
940 ℃, 240 s 15.7±4.0 101.34 0.0043
940 ℃, 270 s 17.5±5.3 117.96 0.0047
940 ℃, 300 s 20.2±6.7 126.99 0.0052
940 ℃, 330 s 29.0±8.1 144.76 0.0039
980 ℃, 240s 30.2±13.7 171.96 0.0011
980 ℃, 270 s 38.4±18.2 97.51 0.0005
表1  含Nb无取向硅钢经不同退火工艺处理后实测的富Nb析出相粒子尺寸与分数及铁素体晶粒尺寸
图6  含Nb无取向硅钢冷轧后的ODF图及不同工艺退火后的γ织构、η织构
[1] Gong J, Luo H W.Progress on the research of high-strength non-oriented silicon steel sheets in traction motors of hybrid/electrical vehicles[J]. J. Mater. Eng., 2015, 43: 102(龚坚, 罗海文. 新能源汽车驱动电机用高强度无取向硅钢片的研究与进展 [J]. 材料工程, 2015, 43: 102)
[2] Pan Z D, Xiang L, Zhang C, et al.Development of high-strength non-oriented electrical steel by TSCR[J]. Iron Steel Van. Tit., 2013, 34(4): 78(潘振东, 项利, 张晨等. TSCR试制高强度无取向电工钢 [J]. 钢铁钒钛, 2013, 34(4): 78)
[3] Nippon Steel Corporation. High-tensile-strength non-oriented electrical steel sheet with good workability and magnetic properties[P]. Japan Pat, H1-162748, 1989(新日本製鐵株式会社. 加工性と磁気特性のすぐれた高抗張力無方向性電磁鋼板 [P]. 日本专利, 平1-162748, 1989)
[4] Hong S G, Kang K B, Park C G.Strain-induced precipitation of NbC in Nb and Nb-Ti microalloyed HSLA steels[J]. Scr. Mater., 2002, 46: 163
doi: 10.1016/S1359-6462(01)01214-3
[5] Craven A J, He K, Garvie L A J, et al. Complex heterogeneous precipitation in titanium-niobium microalloyed Al-killed HSLA steels—I. (Ti, Nb)(C, N) particles[J]. Acta Mater., 2000, 48: 3857
doi: 10.1016/S1359-6454(00)00194-4
[6] Andrade H L, Akben M G, Jonas J J.Effect of molybdenum, niobium, and vanadium on static recovery and recrystallization and on solute strengthening in microalloyed steels[J]. Metall. Trans., 1983, 14A: 1967
doi: 10.1007/BF02662364
[7] Chang L, Hwang Y S.Effect of vanadium content and annealing temperature on recrystallisation, grain growth, and magnetic propertiesin 0.3% Si electrical steels[J]. Mater. Sci. Technol., 1998, 14: 608
doi: 10.1179/mst.1998.14.7.608
[8] Nippon Steel Corporation. Non-oriented electrical steel sheet [P]. Chin Pat, 102292462A, 2011(新日本制铁株式会社. 无方向性电磁钢板 [P]. 中国专利, 102292462A, 2011)
[9] Hulka K, Vlad C, Doniga L A.The role of niobium as microalloying element in electrical sheet[J]. Steel Res. Int., 2002, 73: 453
doi: 10.1002/srin.200200014
[10] Tanaka I, Yashiki H, Iwamoto S, et al.Development of high strength electrical steel SXRC of resource-saving design[J]. Bull. Jpn Inst. Met., 2010, 49: 29
doi: 10.2320/materia.49.29
[11] Goldschmidt H J.The constitution of the iron-niobium-silicon system[J]. J. Iron Steel Inst., 1960, 194: 169
[12] Raghavan V, Ghosh G.The Fe-Nb-Si (iron-niobium-silicon) system[J]. Trans. Indian Inst. Met., 1984, 37: 421
[13] Singh B N, Gupta K P.Laves and μ phases in the Nb-Fe-Si and Co-Fe-Si systems[J]. Metall. Trans., 1972, 3: 1427
doi: 10.1007/BF02643028
[14] Denham A W.Extent and lattice parameters of the laves phase field in the Fe-Nb-Si system[J]. J. Iron Steel Inst., 1967, 205: 435
[15] Steinmetz J, Albrecht J M, Zanne M, et al.A new ternary silicide of Nb and Fe[J]. Compt. Rend., 1975, 281: 831
[16] Wang D, Yang S Y, Yang M J, et al.Experimental investigation of phase equilibria in the Fe-Nb-Si ternary system[J]. J. Alloys Compd., 2014, 605: 183
doi: 10.1016/j.jallcom.2014.03.167
[17] Xu T D, Song S H, Shi H Z, et al.A method of determining the diffusion coefficient of vacancy-solute atom complexes during the segregation to grain boundaries[J]. Acta Metall., 1991, 39: 3119
doi: 10.1016/0956-7151(91)90045-3
[18] Wang K, Xu T D, Song S H, et al.Graphical representation for isothermal kinetics of non-equilibrium grain-boundary segregation[J]. Mater. Charact., 2011, 62: 575
doi: 10.1016/j.matchar.2011.03.008
[19] Fu L M, Shan A D, Wang W.Effect of Nb solute drag and NbC precipitate pinning on the recrystallization grain growth in low carbon Nb-microalloyed steel[J]. Acta Metall. Sin., 2010, 46: 832(付立铭, 单爱党, 王巍. 低碳Nb微合金钢中Nb溶质拖曳和析出相NbC钉扎对再结晶晶粒长大的影响 [J]. 金属学报, 2010, 46: 832)
doi: 10.3724/SP.J.1037.2010.00110
[20] Jenkins K, Lindenmo M.Precipitates in electrical steels[J]. J. Magn. Magn. Mater., 2008, 320: 2423
doi: 10.1016/j.jmmm.2008.03.062
[21] De Campos M F, Teixeira J C, Landgraf F J G. The optimum grain size for minimizing energy losses in iron[J]. J. Magn. Magn. Mater., 2006, 301: 94
doi: 10.1016/j.jmmm.2005.06.014
[22] Shiozaki M, Kurosaki Y.The effects of grain size on the magnetic properties of nonoriented electrical steel sheets[J]. J. Mater. Eng., 1989, 11: 37
doi: 10.1007/BF02833752
[23] Huneus H, Günther K, Kochmann T, et al.Nonoriented magnetic steel with improved texture and permeability[J]. J. Mater. Eng. Perform., 1993, 2: 199
doi: 10.1007/BF02660286
[24] Gheorghies C, Doniga A.Evolution of texture in grain oriented silicon steels[J]. J. Iron Steel Res. Int., 2009, 16: 78
doi: 10.1016/S1006-706X(09)60065-0
[25] Mao W M, Yang P.Material Science Principles on Electrical Steels [M]. Beijing: High Education Press, 2013: 121(毛卫民, 杨平. 电工钢的材料学原理 [M]. 高等教育出版社, 2013: 121)
[26] Park J T, Szpunar J A.Evolution of recrystallization texture in nonoriented electrical steels[J]. Acta Mater., 2003, 51: 3037
doi: 10.1016/S1359-6454(03)00115-0
[27] Hutchinson W B.Development of textures in recrystallization[J]. Met. Sci., 1974, 8: 185
doi: 10.1179/msc.1974.8.1.185
[28] Jong-Tae P, Szpunar J A.Texture development during grain growth in nonoriented electrical steels[J]. ISIJ Int., 2005, 45: 743
doi: 10.2355/isijinternational.45.743
[29] Zhou S B, Chen Y T, Feng D J, et al.Effect of Al in the nonoriented electrical steel on texture and grain boundary development during grain growth[J]. Electr. Eng. Mater., 2010,(1): 33)(周顺兵, 陈颜堂, 冯大军等. Al在无取向电工钢晶粒长大过程中对织构及晶界变化的影响 [J]. 电工材料, 2010, (1): 33).
doi: 10.3969/j.issn.1671-8887.2010.01.009
[30] Emren F, Von Schlippenbach U, Lücke K.Investigation of the development of the recrystallization textures in deep drawing steels by ODF analysis[J]. Acta Metall., 1986, 34: 2105
doi: 10.1016/0001-6160(86)90015-5
[31] Zhao Y, He Z Z, Weng Q Y, et al.Grain boundary segregation in electrical steels[J]. J. Iron Steel Res., 1995, 7(1): 66(赵宇, 何忠治, 翁庆宇等. 电工钢中的晶界偏聚 [J]. 钢铁研究学报, 1995, 7(1): 66)
[1] 孙亚超, 朱明刚, 韩瑞, 石晓宁, 俞能君, 宋利伟, 李卫. 各向异性稀土永磁薄膜的磁黏滞性[J]. 金属学报, 2018, 54(3): 457-462.
[2] 王涛, 万志鹏, 孙宇, 李钊, 张勇, 胡连喜. 镍基变形高温合金动态软化行为与组织演变规律研究[J]. 金属学报, 2018, 54(1): 83-92.
[3] 王永金, 宋仁伯, 宋仁峰. 9Cr18合金半固态触变压缩变形行为及组织演变[J]. 金属学报, 2018, 54(1): 39-46.
[4] 胡小锋, 姜海昌, 赵明久, 闫德胜, 陆善平, 戎利建. 一种Fe-Cr-Ni-Mo高强高韧合金钢焊接接头的组织和力学性能[J]. 金属学报, 2018, 54(1): 1-10.
[5] 秦凤明, 李亚杰, 赵晓东, 何文武, 陈慧琴. 含N量对Mn18Cr18N奥氏体不锈钢的析出行为及力学性能的影响[J]. 金属学报, 2018, 54(1): 55-64.
[6] 李天瑞, 刘国怀, 徐莽, 牛红志, 付天亮, 王昭东, 王国栋. Ti-43Al-4Nb-1.5Mo合金包套锻造与热处理过程的微观组织及高温拉伸性能[J]. 金属学报, 2017, 53(9): 1055-1064.
[7] 刘国怀, 李天瑞, 徐莽, 付天亮, 李勇, 王昭东, 王国栋. 累积叠轧TC4钛合金的组织演化与力学性能[J]. 金属学报, 2017, 53(9): 1038-1046.
[8] 侯陇刚, 刘明荔, 王新东, 庄林忠, 张济山. 高强7050铝合金超低温大变形加工与组织、性能调控[J]. 金属学报, 2017, 53(9): 1075-1090.
[9] 郭廷彪, 李琦, 王晨, 张锋, 贾智. 单晶Cu等通道转角挤压A路径形变特征及力学性能[J]. 金属学报, 2017, 53(8): 991-1000.
[10] 张文奇, 朱海红, 胡志恒, 曾晓雁. AlSi10Mg的激光选区熔化成形研究[J]. 金属学报, 2017, 53(8): 918-926.
[11] 惠亚军, 潘辉, 刘锟, 李文远, 于洋, 陈斌, 崔阳. 600 MPa级Nb-Ti微合金化高成形性元宝梁用钢的强化机制[J]. 金属学报, 2017, 53(8): 937-946.
[12] 李细锋, 陈楠楠, 李佼佼, 何雪婷, 刘红兵, 郑兴伟, 陈军. 温度与应变速率对Invar 36合金变形行为的影响[J]. 金属学报, 2017, 53(8): 968-974.
[13] 杨建海,张玉祥,葛利玲,程晓,陈家照,高杨. 焊前混合表面纳米化对2A14铝合金搅拌摩擦焊接头微观组织和力学性能的影响[J]. 金属学报, 2017, 53(7): 842-850.
[14] 耿遥祥,林鑫,羌建兵,王英敏,董闯. Finemet型纳米晶软磁合金的双团簇特征与成分优化[J]. 金属学报, 2017, 53(7): 833-841.
[15] 刘晓云,王文广,王东,肖伯律,倪丁瑞,陈礼清,马宗义. 片层石墨尺寸对片层石墨/Al复合材料的强度和热导率的影响[J]. 金属学报, 2017, 53(7): 869-878.