Please wait a minute...
金属学报  2018, Vol. 54 Issue (3): 377-384    DOI: 10.11900/0412.1961.2017.00326
  本期目录 | 过刊浏览 |
退火工艺对含Nb高强无取向硅钢组织及性能的影响
黄俊, 罗海文()
北京科技大学冶金与生态工程学院 北京 100083
Influence of Annealing Process on Microstructures, Mechanical and Magnetic Properties of Nb-Containing High-Strength Non-Oriented Silicon Steel
Jun HUANG, Haiwen LUO()
School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
全文: PDF(4904 KB)   HTML
摘要: 

研究了退火工艺对含Nb高强冷轧无取向硅钢组织、磁性能与力学性能的影响。退火温度升高与退火时间延长均可导致Nb在晶界处的偏聚减弱、富Nb析出相粒子的固溶与粗化,因此阻止晶界迁移的钉扎力降低,晶粒长大;富Nb相粒子粗化与晶粒长大均可降低铁损,但也同时使得强度显著降低。因此,含Nb高强冷轧无取向硅钢的磁性能与力学性能无法同时得到优化。当采用940 ℃保温270 s退火工艺后,Nb偏聚于该钢晶界并同时有大量富Nb相粒子析出,有效抑制了晶粒长大与γ织构的发展,可以在磁感和铁损尚未明显恶化的情况下,通过晶粒细化和析出强化有效提高该钢的屈服强度,达到该钢磁性能与力学性能的最佳匹配,此时磁感应强度B50为1.690 T,铁损P1.5/50为4.86 W/kg,P1.0/400为30.47 W/kg,屈服强度为505 MPa,断后伸长率为17.55%。

关键词 高强度无取向硅钢Nb再结晶磁性能力学性能    
Abstract

As the core material of transaction motor for electrical/hybrid vehicles, the non-oriented silicon steel (NOSS) sheets require not only the good magnetic properties, i.e. high permeability and low iron loss, but also high yield strength to resist the centrifugal force during the high speed rotation. In this work, Nb element was added into the conventional NOSS to improve the strength without sacrificing the good magnetic properties too much. The effects of annealing process on the microstructures, magnetic and mechanical properties of Nb-containing high-strength non-oriented cold-rolled silicon steel were studied. The increases of annealing temperature and time both lead to the reduced segreation of Nb at grain boundaries and the solution and ripening of precipitates, which means the decreased suppression on the migration of grain boundaries; thus, the recrystallized grains start to grow; particularly, the density of {111}<112> texture component may increase to deteriorate the magnetic flux density, B50. The best mechanical and magnetic properties cannot be achieved at the same time. The annealing process at 940 ℃ for 270 s could lead to the best combination of mechanical and magnetic properties, which include B50 of 1.69 T, the iron loss P1.5/50 of 4.86 W/kg and P1.0/400 of 30.47 W/kg, resulting from both the segregation of solute Nb at grain boundaries and the extensive precipitation which refrains the grain growth and development of harmful γ texture. Therefore, the yield strength is increased due to both grain refinement and precipitation strengthening without greatly sacrificing the permeability and iron loss.

Key wordshigh strength non-oriented silicon steel    niobium    recrystallization    magnetic property    mechanical property
收稿日期: 2017-08-01      出版日期: 2017-11-08
作者简介:

作者简介 黄 俊,男,1991年生,硕士生

引用本文:

黄俊, 罗海文. 退火工艺对含Nb高强无取向硅钢组织及性能的影响[J]. 金属学报, 2018, 54(3): 377-384.
Jun HUANG, Haiwen LUO. Influence of Annealing Process on Microstructures, Mechanical and Magnetic Properties of Nb-Containing High-Strength Non-Oriented Silicon Steel. Acta Metall Sin, 2018, 54(3): 377-384.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2017.00326      或      http://www.ams.org.cn/CN/Y2018/V54/I3/377

图1  含Nb无取向硅钢经不同工艺退火后组织的OM像
图2  含Nb无取向硅钢经不同工艺退火后富Nb相粒子的形貌变化及热力学性质图
图3  含Nb无取向硅钢经不同工艺退火后Nb元素在钢中的分布图
图4  含Nb无取向硅钢经不同工艺退火后获得的工频铁损P1.5/50、高频铁损P1.0/400和磁感应强度B50
图5  含Nb无取向硅钢经不同工艺退火后的力学性能
Annealing process Average size of
ferrite grain / μm
Average size of
Nb-rich particle / nm
Volume fraction of particle
940 ℃, 240 s 15.7±4.0 101.34 0.0043
940 ℃, 270 s 17.5±5.3 117.96 0.0047
940 ℃, 300 s 20.2±6.7 126.99 0.0052
940 ℃, 330 s 29.0±8.1 144.76 0.0039
980 ℃, 240s 30.2±13.7 171.96 0.0011
980 ℃, 270 s 38.4±18.2 97.51 0.0005
表1  含Nb无取向硅钢经不同退火工艺处理后实测的富Nb析出相粒子尺寸与分数及铁素体晶粒尺寸
图6  含Nb无取向硅钢冷轧后的ODF图及不同工艺退火后的γ织构、η织构
[1] Gong J, Luo H W.Progress on the research of high-strength non-oriented silicon steel sheets in traction motors of hybrid/electrical vehicles[J]. J. Mater. Eng., 2015, 43: 102(龚坚, 罗海文. 新能源汽车驱动电机用高强度无取向硅钢片的研究与进展 [J]. 材料工程, 2015, 43: 102)
[2] Pan Z D, Xiang L, Zhang C, et al.Development of high-strength non-oriented electrical steel by TSCR[J]. Iron Steel Van. Tit., 2013, 34(4): 78(潘振东, 项利, 张晨等. TSCR试制高强度无取向电工钢 [J]. 钢铁钒钛, 2013, 34(4): 78)
[3] Nippon Steel Corporation. High-tensile-strength non-oriented electrical steel sheet with good workability and magnetic properties[P]. Japan Pat, H1-162748, 1989(新日本製鐵株式会社. 加工性と磁気特性のすぐれた高抗張力無方向性電磁鋼板 [P]. 日本专利, 平1-162748, 1989)
[4] Hong S G, Kang K B, Park C G.Strain-induced precipitation of NbC in Nb and Nb-Ti microalloyed HSLA steels[J]. Scr. Mater., 2002, 46: 163
[5] Craven A J, He K, Garvie L A J, et al. Complex heterogeneous precipitation in titanium-niobium microalloyed Al-killed HSLA steels—I. (Ti, Nb)(C, N) particles[J]. Acta Mater., 2000, 48: 3857
[6] Andrade H L, Akben M G, Jonas J J.Effect of molybdenum, niobium, and vanadium on static recovery and recrystallization and on solute strengthening in microalloyed steels[J]. Metall. Trans., 1983, 14A: 1967
[7] Chang L, Hwang Y S.Effect of vanadium content and annealing temperature on recrystallisation, grain growth, and magnetic propertiesin 0.3% Si electrical steels[J]. Mater. Sci. Technol., 1998, 14: 608
[8] Nippon Steel Corporation. Non-oriented electrical steel sheet [P]. Chin Pat, 102292462A, 2011(新日本制铁株式会社. 无方向性电磁钢板 [P]. 中国专利, 102292462A, 2011)
[9] Hulka K, Vlad C, Doniga L A.The role of niobium as microalloying element in electrical sheet[J]. Steel Res. Int., 2002, 73: 453
[10] Tanaka I, Yashiki H, Iwamoto S, et al.Development of high strength electrical steel SXRC of resource-saving design[J]. Bull. Jpn Inst. Met., 2010, 49: 29
[11] Goldschmidt H J.The constitution of the iron-niobium-silicon system[J]. J. Iron Steel Inst., 1960, 194: 169
[12] Raghavan V, Ghosh G.The Fe-Nb-Si (iron-niobium-silicon) system[J]. Trans. Indian Inst. Met., 1984, 37: 421
[13] Singh B N, Gupta K P.Laves and μ phases in the Nb-Fe-Si and Co-Fe-Si systems[J]. Metall. Trans., 1972, 3: 1427
[14] Denham A W.Extent and lattice parameters of the laves phase field in the Fe-Nb-Si system[J]. J. Iron Steel Inst., 1967, 205: 435
[15] Steinmetz J, Albrecht J M, Zanne M, et al.A new ternary silicide of Nb and Fe[J]. Compt. Rend., 1975, 281: 831
[16] Wang D, Yang S Y, Yang M J, et al.Experimental investigation of phase equilibria in the Fe-Nb-Si ternary system[J]. J. Alloys Compd., 2014, 605: 183
[17] Xu T D, Song S H, Shi H Z, et al.A method of determining the diffusion coefficient of vacancy-solute atom complexes during the segregation to grain boundaries[J]. Acta Metall., 1991, 39: 3119
[18] Wang K, Xu T D, Song S H, et al.Graphical representation for isothermal kinetics of non-equilibrium grain-boundary segregation[J]. Mater. Charact., 2011, 62: 575
[19] Fu L M, Shan A D, Wang W.Effect of Nb solute drag and NbC precipitate pinning on the recrystallization grain growth in low carbon Nb-microalloyed steel[J]. Acta Metall. Sin., 2010, 46: 832(付立铭, 单爱党, 王巍. 低碳Nb微合金钢中Nb溶质拖曳和析出相NbC钉扎对再结晶晶粒长大的影响 [J]. 金属学报, 2010, 46: 832)
[20] Jenkins K, Lindenmo M.Precipitates in electrical steels[J]. J. Magn. Magn. Mater., 2008, 320: 2423
[21] De Campos M F, Teixeira J C, Landgraf F J G. The optimum grain size for minimizing energy losses in iron[J]. J. Magn. Magn. Mater., 2006, 301: 94
[22] Shiozaki M, Kurosaki Y.The effects of grain size on the magnetic properties of nonoriented electrical steel sheets[J]. J. Mater. Eng., 1989, 11: 37
[23] Huneus H, Günther K, Kochmann T, et al.Nonoriented magnetic steel with improved texture and permeability[J]. J. Mater. Eng. Perform., 1993, 2: 199
[24] Gheorghies C, Doniga A.Evolution of texture in grain oriented silicon steels[J]. J. Iron Steel Res. Int., 2009, 16: 78
[25] Mao W M, Yang P.Material Science Principles on Electrical Steels [M]. Beijing: High Education Press, 2013: 121(毛卫民, 杨平. 电工钢的材料学原理 [M]. 高等教育出版社, 2013: 121)
[26] Park J T, Szpunar J A.Evolution of recrystallization texture in nonoriented electrical steels[J]. Acta Mater., 2003, 51: 3037
[27] Hutchinson W B.Development of textures in recrystallization[J]. Met. Sci., 1974, 8: 185
[28] Jong-Tae P, Szpunar J A.Texture development during grain growth in nonoriented electrical steels[J]. ISIJ Int., 2005, 45: 743
[29] Zhou S B, Chen Y T, Feng D J, et al.Effect of Al in the nonoriented electrical steel on texture and grain boundary development during grain growth[J]. Electr. Eng. Mater., 2010,(1): 33)(周顺兵, 陈颜堂, 冯大军等. Al在无取向电工钢晶粒长大过程中对织构及晶界变化的影响 [J]. 电工材料, 2010, (1): 33).
[30] Emren F, Von Schlippenbach U, Lücke K.Investigation of the development of the recrystallization textures in deep drawing steels by ODF analysis[J]. Acta Metall., 1986, 34: 2105
[31] Zhao Y, He Z Z, Weng Q Y, et al.Grain boundary segregation in electrical steels[J]. J. Iron Steel Res., 1995, 7(1): 66(赵宇, 何忠治, 翁庆宇等. 电工钢中的晶界偏聚 [J]. 钢铁研究学报, 1995, 7(1): 66)
[1] 董虎林,包海萍,彭建洪. TiC含量对铁基复合材料力学性能及耐磨性能的影响[J]. 金属学报, 2019, 55(8): 1049-1057.
[2] 祝佳林,刘施峰,曹宇,柳亚辉,邓超,刘庆. 交叉轧制周期对高纯Ta板变形及再结晶梯度的影响[J]. 金属学报, 2019, 55(8): 1019-1033.
[3] 李玲,姚生莲,赵晓丽,杨佳佳,王野熹,王鲁宁. 阳极氧化法制备Zr-17Nb合金表面氧化物纳米管阵列及其性能研究[J]. 金属学报, 2019, 55(8): 1008-1018.
[4] 陈兴品,李文佳,任平,曹文全,刘庆. C含量对Fe-Mn-Al-C低密度钢组织和性能的影响[J]. 金属学报, 2019, 55(8): 951-957.
[5] 卢正冠,吴杰,徐磊,崔潇潇,杨锐. Ti2AlNb异形粉末环件的轧制成形与性能研究[J]. 金属学报, 2019, 55(6): 729-740.
[6] 刘巧沐,黄顺洲,刘芳,杨艳,南宏强,张东,孙文儒. B含量对K417G合金凝固过程中组织演变和力学性能的影响[J]. 金属学报, 2019, 55(6): 720-728.
[7] 李旭,杨庆波,樊祥泽,呙永林,林林,张志清. 变形参数对2195 Al-Li合金动态再结晶的影响[J]. 金属学报, 2019, 55(6): 709-719.
[8] 蓝春波,梁家能,劳远侠,谭登峰,黄春艳,莫羡忠,庞锦英. 冷轧态Ti-35Nb-2Zr-0.3O合金的异常热膨胀行为[J]. 金属学报, 2019, 55(6): 701-708.
[9] 张婷,赵宇宏,陈利文,梁建权,李沐奚,侯华. 触变注射成形法制备石墨烯纳米片增强镁基复合材料[J]. 金属学报, 2019, 55(5): 638-646.
[10] 邓亚辉, 杨银辉, 曹建春, 钱昊. 23Cr-2.2Ni-6.3Mn-0.26NNi型双相不锈钢动态再结晶行为研究[J]. 金属学报, 2019, 55(4): 445-456.
[11] 白静, 石少锋, 王锦龙, 王帅, 赵骧. Ni-Mn-Ga-Ti铁磁形状记忆合金的相稳定性和磁性能的第一性原理计算[J]. 金属学报, 2019, 55(3): 369-375.
[12] 吕钊钊,祖宇飞,沙建军,鲜玉强,张伟,崔鼎,严从林. 含Cu界面层碳纤维增强铝基复合材料制备工艺及其力学性能研究[J]. 金属学报, 2019, 55(3): 317-324.
[13] 万志鹏, 王涛, 孙宇, 胡连喜, 李钊, 李佩桓, 张勇. GH4720Li合金热变形过程动态软化机制[J]. 金属学报, 2019, 55(2): 213-222.
[14] 吴玉程. 面向等离子体W材料改善韧性的方法与机制[J]. 金属学报, 2019, 55(2): 171-180.
[15] 赵乃勤, 刘兴海, 蒲博闻. 多维度碳纳米相增强铝基复合材料研究进展[J]. 金属学报, 2019, 55(1): 1-15.