Please wait a minute...
金属学报  2018, Vol. 54 Issue (6): 868-876    DOI: 10.11900/0412.1961.2017.00318
  本期目录 | 过刊浏览 |
316L不锈钢的三维晶粒与晶界形貌特征及尺寸分布
刘廷光1,2(), 夏爽2, 白琴2, 周邦新2
1 北京科技大学国家材料服役安全科学中心 北京 100083
2 上海大学材料科学与工程学院 上海 200072
Morphological Characteristics and Size Distributions of Three-Dimensional Grains and Grain Boundaries in 316L Stainless Steel
Tingguang LIU1,2(), Shuang XIA2, Qin BAI2, Bangxin ZHOU2
1 National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083, China
2 School of Materials Science and Engineering, Shanghai University, Shanghai 200072, China
引用本文:

刘廷光, 夏爽, 白琴, 周邦新. 316L不锈钢的三维晶粒与晶界形貌特征及尺寸分布[J]. 金属学报, 2018, 54(6): 868-876.
Tingguang LIU, Shuang XIA, Qin BAI, Bangxin ZHOU. Morphological Characteristics and Size Distributions of Three-Dimensional Grains and Grain Boundaries in 316L Stainless Steel[J]. Acta Metall Sin, 2018, 54(6): 868-876.

全文: PDF(2969 KB)   HTML
摘要: 

使用连续截面法结合三维电子背散射衍射(3D-EBSD)技术研究了316L不锈钢的三维显微组织,重点分析了晶粒和晶界的三维形貌特征及各特征参数的分布规律,包括晶粒尺寸、晶粒表面积、晶粒的晶界面数、晶界尺寸和晶粒的平均晶界尺寸,并统计分析了各特征参数之间的关系。结果表明:316L不锈钢的三维晶粒和三维晶界的形貌特征参数均服从对数正态分布,各参数与晶粒尺寸之间的关系符合幂函数。另外,由于存在大量孪晶,造成316L不锈钢的三维晶粒形貌十分复杂,且尺寸越大的晶粒形貌越复杂,晶界面数越多,表面积越大,与等轴晶的偏离也越大。

关键词 316L不锈钢三维电子背散射衍射三维显微组织三维晶粒三维晶界    
Abstract

Three-dimensional characterization of grains and grain boundaries is significant to study the microstructure of polycrystalline materials, and is the key to advance the subject of three-dimensional materials science (3DMS). In this work, the technique of serial sectioning by mechanical polishing coupled with 3D electron backscatter diffraction (3D-EBSD) mapping was used to measure the microstructure of a 316L stainless steel in 3D. Volume of the collected 3D-EBSD microstructure is 600 μm×600 μm×257.5 μm, which is quite large to study the 3D microstructure of structural materials with conventional grain size (20~60 μm). Dream3D and in-house developed Matlab programs were used to process the 3D-EBSD data, and subsequently ParaView was used to visualize the grains and grain boundaries in 3D. Combined usage of these tools and in-house programs make the possibility that not only 3D grains but also 3D grain boundaries can be studied in both morphology and quantification. In total, 1840 grains and 9177 grain boundaries are included in the measured 3D-EBSD microstructure. The 3D morphological characteristics and size distributions of grains and grain boundaries in the 316L stainless steel were investigated, including 3D grain size, grain surface area, boundary quantity per grain, grain boundary size and the average boundary size per grain, as well as relationships between these morphological parameters were discussed. Results showed that distributions of all of these morphological parameters of 3D grains and grain boundaries in the polycrystalline 316L steel can be well represented by log-normal distribution, and all relationships of these parameters versus grain size can be well represented by power function. Additionally, the 3D morphologies of most grains in the 316L stainless steel deviate from the ideal equiaxed grains, having complex shapes due to existing of twins, such as semi-sphere shaped, plate shaped and some very complex grains. In many ways, the larger grains have more complex morphology with greater number of faces, larger surface area and larger deviation from equiaxed grains.

Key words316L stainless steel    3D-EBSD    3D microstructure    3D grain    3D grain boundary
收稿日期: 2017-07-27     
ZTFLH:  TG142.1  
基金资助:国家自然科学基金项目No.51671122和中央高校基本科研业务费专项资金项目No.FRF-TP-16-041A1
作者简介:

作者简介 刘廷光,男,1986年生,博士

图1  3D-EBSD显微组织采集方法、3D重构图及其第101层2D EBSD图
图2  典型晶粒的3D形貌及该晶粒的4个晶界的3D形貌图
图3  3D晶粒尺寸分布及其对数正态分布拟合曲线
图4  3D晶粒的表面积分布及其对数正态分布拟合曲线,晶粒表面积与晶粒尺寸关系统计及其幂函数拟合曲线和球表面积曲线
图5  所测3D显微组织中一个形貌十分复杂的大尺寸晶粒(g101)和它的2个邻接晶粒(g1211和g1026)
图6  3D晶粒的晶界面数分布及其对数正态分布拟合曲线,晶粒的晶界面数与晶粒尺寸关系统计及其幂函数拟合曲线
图7  3D晶界尺寸(等效圆直径)分布及其对数正态分布拟合曲线
图8  3D晶粒的平均晶界尺寸分布及其对数正态分布拟合曲线,晶粒的平均晶界尺寸与晶粒尺寸关系统计及其幂函数拟合曲线
[1] Lewis A C, Howe D.Future directions in 3D materials science: Outlook from the first international conference on 3D materials science[J]. JOM, 2014, 66: 670
[2] Watanabe T.An approach to grain boundary design for strong and ductile polycrystals[J]. Res. Mech., 1984, 11: 47
[3] Hu C L, Xia S, Li H, et al.Improving the intergranular corrosion resistance of 304 stainless steel by grain boundary network control[J]. Corros. Sci., 2011, 53: 1880
[4] Liu T G, Xia S, Li H, et al.The highly twinned grain boundary network formation during grain boundary engineering[J]. Mater. Lett., 2014, 133: 97
[5] Michiuchi M, Kokawa H, Wang Z J, et al.Twin-induced grain boundary engineering for 316 austenitic stainless steel[J]. Acta Mater., 2006, 54: 5179
[6] Schuh C A, Minich R W, Kumar M.Connectivity and percolation in simulated grain-boundary networks[J]. Philos. Mag., 2003, 83: 711
[7] Frary M, Schuh C A.Connectivity and percolation behaviour of grain boundary networks in three dimensions[J]. Philos. Mag., 2005, 85: 1123
[8] Ullah A, Liu G Q, Luan J H, et al.Three-dimensional visualization and quantitative characterization of grains in polycrystalline iron[J]. Mater. Charact., 2014, 91: 65
[9] Xu W, Ferry M, Mateescu N, et al.Techniques for generating 3-D EBSD microstructures by FIB tomography[J]. Mater. Charact., 2007, 58: 961
[10] Zaefferer S, Wright S I, Raabe D.Three-dimensional orientation microscopy in a focused ion beam-scanning electron microscope: A new dimension of microstructure characterization[J]. Metall. Mater. Trans., 2008, 39A: 374
[11] Wang H Z, Yang P, Mao W M.3D EBSD analysis of morphology and habit plane for lath martensite[J]. J. Mater. Eng., 2013, (4): 74(王会珍, 杨平, 毛卫民. 板条状马氏体形貌和惯习面的3D EBSD分析[J]. 材料工程, 2013, (4): 74)
[12] Lewis A C, Bingert J F, Rowenhorst D J, et al.Two-and three-dimensional microstructural characterization of a super-austenitic stainless steel[J]. Mater. Sci. Eng., 2006, A418: 11
[13] Rowenhorst D J, Gupta A, Feng C R, et al.3D crystallographic and morphological analysis of coarse martensite: Combining EBSD and serial sectioning[J]. Scr. Mater., 2006, 55: 11
[14] Luan J H, Liu G Q, Wang H.Three-dimensional reconstruction of grains in pure iron specimen[J]. Acta Metall. Sin., 2011, 47: 69(栾军华, 刘国权, 王浩. 纯Fe试样中晶粒的三维可视化重建[J]. 金属学报, 2011, 47: 69)
[15] Lind J, Li S F, Kumar M.Twin related domains in 3D microstructures of conventionally processed and grain boundary engineered materials[J]. Acta Mater., 2016, 114: 43
[16] Hefferan C M, Lind J, Li S F, et al.Observation of recovery and recrystallization in high-purity aluminum measured with forward modeling analysis of high-energy diffraction microscopy[J]. Acta Mater., 2012, 60: 4311
[17] Lin B, Jin Y, Hefferan C M, et al.Observation of annealing twin nucleation at triple lines in nickel during grain growth[J]. Acta Mater., 2015, 99: 63
[18] King A, Johnson G, Engelberg D, et al.Observations of intergranular stress corrosion cracking in a grain-mapped polycrystal[J]. Science, 2008, 321: 382
[19] Larson B C, Yang W G, Ice G E, et al.Three-dimensional X-ray structural microscopy with submicrometre resolution[J]. Nature, 2002, 415: 887
[20] Rowenhorst D J, Lewis A C, Spanos G.Three-dimensional analysis of grain topology and interface curvature in a β-titanium alloy[J]. Acta Mater., 2010, 58: 5511
[21] Zhang C, Enomoto M, Suzuki A, et al.Characterization of three-dimensional grain structure in polycrystalline iron by serial sectioning[J]. Metall. Mater. Trans., 2004, 35A: 1927
[22] Hull F C.Plane section and spatial characteristics of equiaxed β-brass grains[J]. Mater. Sci. Technol., 1988, 4: 778
[23] Groeber M, Ghosh S, Uchic M D, et al.A framework for automated analysis and simulation of 3D polycrystalline microstructure: Part 1: Statistical characterization[J]. Acta Mater., 2008, 56: 1257
[24] Marrow T J, Babout L, Jivkov A P, et al.Three dimensional observations and modelling of intergranular stress corrosion cracking in austenitic stainless steel[J]. J. Nucl. Mater., 2006, 352: 62
[25] Groeber M A, Jackson M A.DREAM. 3D: A digital representation environment for the analysis of microstructure in 3D[J]. Integr. Mater. Manuf. Innov., 2014, 3: 5
[26] Groeber M, Ghosh S, Uchic M D, et al.A framework for automated analysis and simulation of 3D polycrystalline microstructures: Part 2: Synthetic structure generation[J]. Acta Mater., 2008, 56: 1274
[27] Bhandari Y, Sarkar S, Groeber M, et al.3D polycrystalline microstructure reconstruction from FIB generated serial sections for FE analysis[J]. Comput. Mater. Sci., 2007, 41: 222
[28] Ayachit U.The ParaView Guide: A Parallel Visualization Application[M]. New York: Kitware, 2015: 1
[29] Feltham P.Grain growth in metals[J]. Acta Metall., 1957, 5: 97
[30] Liu T G, Xia S, Wang B S, et al.Grain orientation statistics of grain-clusters and the propensity of multiple-twinning during grain boundary engineering[J]. Mater. Des., 2016, 112: 442
[1] 余晨帆, 赵聪聪, 张哲峰, 刘伟. 选区激光熔化316L不锈钢的拉伸性能[J]. 金属学报, 2020, 56(5): 683-692.
[2] 李丹, 李杨, 陈荣生, 倪红卫. 不锈钢网上水热制备NiCo2O4/MoS2纳米复合结构及其在电解水制氢中的应用[J]. 金属学报, 2018, 54(8): 1179-1186.
[3] 刘廷光, 夏爽, 白琴, 周邦新, 陆永浩. 孪晶界在316L不锈钢三维晶界网络中的分布特征[J]. 金属学报, 2018, 54(10): 1377-1386.
[4] 郭舒,韩恩厚,王海涛,张志明,王俭秋. 核电站316L不锈钢弯头应力腐蚀行为的寿命预测[J]. 金属学报, 2017, 53(4): 455-464.
[5] 马广璐, 崔新宇, 沈艳芳, NuriaCINCA, JosepM.GUILEMANY, 熊天英. 基体材料力学性能对316L不锈钢颗粒沉积行为的影响*[J]. 金属学报, 2016, 52(12): 1610-1618.
[6] 刘侠和, 吴欣强, 韩恩厚. 温度对国产核级316L不锈钢在加Zn水中电化学腐蚀性能的影响*[J]. 金属学报, 2014, 50(1): 64-70.
[7] 张利涛,王俭秋. 国产锻造态核级管材316L不锈钢在高温高压水中的应力腐蚀裂纹扩展行为[J]. 金属学报, 2013, 49(8): 911-916.
[8] 喇培清,孟倩,姚亮,周毛熊,魏玉鹏. Al元素对热轧316L不锈钢显微组织和力学性能的影响[J]. 金属学报, 2013, 49(6): 739-744.
[9] 刘光洲 王建明 张鉴清 曹楚南. 电解法处理压载水对316L不锈钢腐蚀行为的影响[J]. 金属学报, 2011, 47(12): 1600-1604.
[10] 史永娟 任伊宾 张炳春 杨柯. 钝化处理对316L不锈钢血液相容性的影响[J]. 金属学报, 2011, 47(12): 1575-1580.
[11] 贾文鹏 汤慧萍 贺卫卫 林鑫 黄卫东. 316L不锈钢激光快速成形的微观组织模拟[J]. 金属学报, 2010, 46(2): 135-140.
[12] 方信贤 白允强 王章忠. J4不锈钢及化学镀Ni-P和Ni-Cu-P镀层在液-固两相流中的冲刷腐蚀行为[J]. 金属学报, 2010, 46(2): 239-244.
[13] 宋仁伯 项建英 侯东坡 任培东. 316L不锈钢热加工硬化行为及机制[J]. 金属学报, 2010, 46(1): 57-61.
[14] 江慧丰 陈学东 范志超 董杰 姜恒 陆守香. 动态应变时效对316L不锈钢疲劳蠕变行为的影响[J]. 金属学报, 2009, 45(3): 326-330.
[15] 王浩; 刘国权 . 基于MacPherson-Srolovitz 拓扑依赖速率方程的三维晶粒尺寸分布研究[J]. 金属学报, 2008, 44(7): 769-774 .