Please wait a minute...
金属学报  2018, Vol. 54 Issue (6): 886-894    DOI: 10.11900/0412.1961.2017.00311
  本期目录 | 过刊浏览 |
高压直流干扰下X80钢在广东土壤中的干扰参数变化规律及腐蚀行为研究
秦润之1, 杜艳霞1(), 路民旭1, 欧莉2, 孙海明2
1 北京科技大学新材料技术研究院 北京 1000832 中石化石油工程设计有限公司 东营 257026
Study of Interference Parameters Variation Regularity and Corrosion Behavior of X80 Steel in Guangdong Soil Under High Voltage Direct Current Interference
Runzhi QIN1, Yanxia DU1(), Minxu LU1, Li OU2, Haiming SUN2
1 Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
2 Sinopec Petroleum Engineering Corporation, Dongying 257026, China
引用本文:

秦润之, 杜艳霞, 路民旭, 欧莉, 孙海明. 高压直流干扰下X80钢在广东土壤中的干扰参数变化规律及腐蚀行为研究[J]. 金属学报, 2018, 54(6): 886-894.
Runzhi QIN, Yanxia DU, Minxu LU, Li OU, Haiming SUN. Study of Interference Parameters Variation Regularity and Corrosion Behavior of X80 Steel in Guangdong Soil Under High Voltage Direct Current Interference[J]. Acta Metall Sin, 2018, 54(6): 886-894.

全文: PDF(1907 KB)   HTML
摘要: 

通过室内模拟实验考察了大幅高压直流干扰电压下,X80钢在广东土壤中的干扰电流密度变化规律及腐蚀行为。结果表明,在50~300 V直流干扰电压下,电流密度随时间的变化呈现典型的3阶段特征:首先,在几秒内急剧上升到较高水平的峰值;然后,在几百秒内下降到较低水平的稳定值;最后,较长时间内维持在稳定值水平。结合干扰过程中试样附近土壤温度、含水率及电阻的测试分析表明,电流密度变化主要是由大幅干扰电压造成短时间内试片周围土壤温度升高,含水率降低,局部电阻率大幅增加所致。同时实验获得直流干扰电压分别为50、100、200及300 V时,1 h干扰实验中X80钢腐蚀速率分别为5.56、7.85、10.63及7.78 μm/h;腐蚀速率随直流干扰电压的升高呈现先增大后减小的趋势,该趋势不同于电流密度峰值随直流干扰电压的变化规律,但与电流密度稳定值的变化规律相似。此外,分析了高压直流干扰下试样腐蚀速率与使用3种形式电流密度计算得到的理论腐蚀速率之间的相关性。结果表明,利用干扰过程中电流密度曲线积分计算得出的理论腐蚀速率误差最小;利用电流密度稳定值计算得到的腐蚀速率误差次之;利用电流密度峰值计算得出的理论腐蚀速率误差最大,可达到实测腐蚀速率的若干倍。据此提出了实际高压直流干扰下参数监测与腐蚀速率的预测方法。

关键词 高压直流直流干扰腐蚀速率电流密度变化规律    
Abstract

High voltage direct current transmission (HVDC) systems develop fast in China recently. The ground electrodes of HVDC systems can inject/absorb large amount of DC current into/from soil, introducing DC interference to nearby pipelines. Then the pipe-to-soil potential shifts positively and high corrosion risk may appear. In this work, indoor HVDC simulation experiments were designed and carried out based on the field test results. Under high voltages, the variation regularity of DCdensity and the corrosion behavior of X80 steel in Guangdong soil were studied. The result showed that under 50, 100, 200 and 300 V DC voltages, the DC density of the coupons had the same trend and could be divided into 3 stages. Firstly, the DC density climbed to peak sharply in several seconds. Then, the DC density decreased gradually to steady value in hundreds of seconds. Lastly, the DC density stayed at that level for the rest of time. The local environment was monitored. The results indicated the variation of the DC density was mainly related to the local soil temperature increment, water content decrement and the substantially growth of the soil spread resistance. After the interference, the corrosion rates were measured to be 5.56, 7.85, 10.63 and 7.78 μm/h, respectively. The variation regularity of the corrosion rates was same with the steady values of DC density, but different from the peak values. Furthermore, 3 methods of calculating corrosion rates were studied. The theoretical corrosion rates calculated by integration of DC density curve had the smallest errors compared with the measured values. The method of using steady DC density had bigger errors and using peak DC density led to the biggest errors. Based on the results, the method of predicting HVDC corrosion rate was proposed.

Key wordsHVDC    DC interference    corrosion rate    current density    variation regularity
收稿日期: 2017-07-24     
ZTFLH:  TG178  
基金资助:国家重点研发计划项目No.2016YFC0802101
作者简介:

作者简介 秦润之,男,1990年生,博士生

图1  高压直流干扰模拟实验装置示意图
图2  X80钢试样在50~300 V直流干扰电压下直流电流密度随时间的变化曲线
图3  峰值电流密度和稳定值电流密度随干扰电压的变化规律
图4  高压直流干扰过程中试片表面1 cm处的土壤温度变化
图5  高压直流干扰施加前后试样表面不同距离处土壤含水率
图6  高压直流干扰施加前后土壤扩散电阻(Rsoil)的变化
图7  X80钢在50~300 V直流电位干扰1 h后的腐蚀形貌
图8  不同高压直流干扰下腐蚀产物的Raman光谱
Voltage Mass loss Corrosion rate
V mg μmh-1
50 3.42 5.56
100 5.90 7.85
200 8.74 10.63
300 5.25 7.78
表1  X80钢在50~300 V直流干扰电压下的失重与腐蚀速率
Voltage Current density / (Acm-2) Error
V Measured Calculated %
50 30.0 32.47 8.23
100 44.8 45.19 0.87
200 68.6 71.27 3.89
300 36.0 36.13 0.36
表2  干扰结束时电流密度实测值与计算值比较
图9  300 V干扰电压下利用电流密度曲线计算的腐蚀速率
Voltage Measured Current density curve Peak current density Steady current density
V corrosion Corrosion Error Corrosion Error Corrosion Error
rate rate % rate % rate %
μmh-1 μmh-1 μmh-1 μmh-1
50 5.56 4.32 22.33 10.59 90.64 3.97 28.51
100 7.85 7.25 7.64 32.16 309.84 5.93 24.40
200 10.63 10.74 0.99 69.24 551.21 9.08 14.57
300 7.78 6.64 14.63 115.01 1378.97 4.77 38.70
表3  3种电流密度计算得到的腐蚀速率与误差
[1] Zhao W J.High Voltage Direct Current Engineering Technology [M]. Beijing: China Electric Power Press, 2004: 1(赵畹君. 高压直流输电工程技术 [M]. 北京: 中国电力出版社, 2004: 1)
[2] Shu Y B, Liu Z H, Gao L Y, et al.A preliminary exploration for design of ±800 kV UHVDC project with transmission capacity of 6400 MW[J]. Power Sys. Technol., 2006, 30(1): 1(舒印彪, 刘泽洪, 高理迎等. ±800kV 6400MW特高压直流输电工程设计[J]. 电网技术, 2006, 30(1): 1)
[3] Liu Z H, Gao L Y, Yu J.Study on ±800 kV UHVDC transmission technology[J]. Elect. Power Constr., 2007, 28: 17(刘泽洪, 高理迎, 余军. ±800 kV特高压直流输电技术研究[J]. 电力建设, 2007, 28: 17)
[4] Zhan Y, Yin X G.Comparative research on HVDC and UHV power transmission[J]. High Voltage Eng., 2001, 27(4): 44(詹奕, 尹项根. 高压直流输电与特高压交流输电的比较研究[J]. 高电压技术, 2001, 27(4): 44)
[5] Larruskain D M, Zamora I, Mazón A J, et al.Transmission and distribution networks: AC versus DC [A]. 9th Spanish Portuguese Congress on Electrical Engineering[C]. Marbella: AEDIE and APDEE, 2005: 245
[6] Zhou H, Zhong Y J.Applicable occasions of UHVAC/UHVDC transmission and their technology comparisons in China[J]. Electric Power Autom. Equip., 2007, 27(5): 6(周浩, 钟一俊. 特高压交、直流输电的适用场合及其技术比较[J]. 电力自动化设备, 2007, 27(5): 6)
[7] Verhiel A J.The effects of high-voltage DC power transmission systems on buried metallic pipelines[J]. IEEE Trans. Ind. General Appl., 1971, (3): 403
[8] Nicholson P.High voltage direct current interference with underground/underwater pipelines [A]. Proceedings of the Corrosion 2010[C]. San Antonio: NACE International, 2010: 10102
[9] Caroli C E, Santos N, Kovarsky D, et al.Itaipu HVDC ground electrodes: Interference considerations and potential curve measurements during Bipole II commissioning[J]. IEEE Trans. Power Deliv., 1990, 5: 1583
[10] Hopper A T, Gideon D N, Berry W E, et al.Analysis of the effects of high-voltage direct-current transmission systems on buried pipelines [R]. Falls Church: PRCI, 1967
[11] Bi W X, Chen H Y, Li Z J, et al.HVDC interference to buried pipeline: Numerical modeling and continuous p/s potential monitoring [A]. Proceedings of the Corrosion 2016[C]. Vancouver: NACE International, 2016: 7714
[12] Ying B.The influence of HVDC system ground electrode on safe operation of long-distance pipeline[J]. Oil-Gas Field Surf. Eng., 2014, 33(7): 23(应斌. 高压直流输电系统接地极对长输管道安全运行的影响[J]. 油气田地面工程, 2014, 33(7): 23)
[13] Gong Y, Xue C L, Yuan Z L, et al.Advanced analysis of HVDC electrodes interference on neighboring pipelines[J]. J. Power Energy Eng., 2015, 3: 332
[14] Qin R Z, Du Y X, Peng G Z, et al.High voltage direct current interference on buried pipelines: Case study and mitigation design [A]. Proceedings of the Corrosion 2017[C]. New Orleans: NACE International, 2017: 9049
[15] Bard A J, Faulkner L R.Electrochemical Methods: Fundamentals and Applications[M]. New York: Wiley, 2000: 16
[16] Cao C N.Principles of electrochemistry of corrosion [M]. 3rd Ed., Beijing: Chemical Industry Press, 2008: 158(曹楚南. 腐蚀电化学原理 [M]. 第3版, 北京: 化学工业出版社, 2008: 158)
[17] Nielsen L V, Nielsen K V, Breuning-Madsen H, et al. AC induced corrosion in pipelines: Detection,characterization and mitigation[A]. Proceedings of the Corrosion2004 [C]. New Orleans: NACE International,2004: No.04211
[18] Nielsen L V, Galsgaard F. Sensor technology for on-line monitoring of AC induced corrosion along pipelines [A]. Proceedings of the Corrosion 2005 [C].Houston: NACE International, 2005: No.05375
[19] Nielsen L V, Nielsen K V. Differential ER-technology for measuring degree of accumulated corrosion as well as instant corrosion rate [A]. Proceedings of the Corrosion 2003 [C].San Diego: NACE International,2003: No.03443
[20] Nielsen L V. Role of alkalization in AC induced corrosion of pipelines and consequences hereof in relation to CP requirements [A]. Proceedings of the Corrosion 2005 [C]. Houston: NACE International,2005: No.05188
[21] Froment F, Tournié A, Colomban P.Raman identification of natural red to yellow pigments: ochre and iron-containing ores[J]. J. Raman Spectrosc., 2008, 39: 560
[22] Dünnwald J, Otto A.An investigation of phase transitions in rust layers using Raman spectroscopy[J]. Corros. Sci., 1989, 29: 1167
[23] Xing X C, Li X G, Xiao K, et al.Corrosion behaviors at the initial stage of Q235 steel in Xisha atmosphere[J]. J. Chin. Soc. Corros. Prot., 2009, 29: 465(郝献超, 李晓刚, 肖葵等. Q235钢在西沙大气环境中的初期腐蚀行为[J]. 中国腐蚀与防护学报, 2009, 29: 465)
[24] Colomban P, Cherifi S, Despert G.Raman identification of corrosion products on automotive galvanized steel sheets[J]. J. Raman Spectrosc., 2010, 39: 881
[25] Cao X B, Wu G N, Fu L H, et al.The impact of DC current density on soil resistivity[J]. Proc. CSEE, 2008, 28(6): 37(曹晓斌, 吴广宁, 付龙海等. 直流电流密度对土壤电阻率的影响[J]. 中国电机工程学报, 2008, 28(6): 37)
[26] Huang Z, Wu G N, Jiang W, et al.Study of the influences on soil resistivity caused by HVDC mono-polar operation [A]. International Conference on High Voltage Engineering and Application[C]. Chongqing: IEEE, 2009: 232
[27] Sima W, Luo L, Yuan T, et al.Experimental analysis on the change regulation of the soil resistivity considering the thermal effect around the grounding electrode [A]. Asia-Pacific International Conference on Lightning[C]. Chengdu: IEEE, 2011: 673
[28] Sima W X, Luo L, Yuan T, et al.Temperature characteristic of soil resistivity and its effect on the DC grounding electrode heating[J]. High Volt. Eng., 2012, 38: 1192(司马文霞, 骆玲, 袁涛等. 土壤电阻率的温度特性及其对直流接地极发热的影响[J]. 高电压技术, 2012, 38: 1192)
[1] 彭治强, 柳前, 郭东伟, 曾子航, 曹江海, 侯自兵. 基于大数据挖掘的连铸结晶器传热独立变化规律[J]. 金属学报, 2023, 59(10): 1389-1400.
[2] 马荣耀, 赵林, 王长罡, 穆鑫, 魏欣, 董俊华, 柯伟. 静水压力对金属腐蚀热力学及动力学的影响[J]. 金属学报, 2019, 55(2): 281-290.
[3] 时惠英, 杨超, 蒋百灵, 黄蓓, 王迪. 双脉冲磁控溅射峰值靶电流密度对TiN薄膜结构与力学性能的影响[J]. 金属学报, 2018, 54(6): 927-934.
[4] 张慧, 杜艳霞, 李伟, 路民旭. 不同环境介质中X70钢的交流腐蚀行为及腐蚀产物膜层分析[J]. 金属学报, 2017, 53(8): 975-982.
[5] 徐伟,路新,杜艳霞,孟庆宇,黎鸣,曲选辉. 粉末冶金制备Ti-Fe二元合金的耐腐蚀性能[J]. 金属学报, 2017, 53(1): 38-46.
[6] 李绪亮,张迎春,江凡,王莉莉,刘艳红,孙宁波. 电流密度对V-4Cr-4Ti合金基体上电沉积W涂层显微结构的影响[J]. 金属学报, 2013, 49(6): 745-750.
[7] 金帅,潘庆松,卢磊. 电流密度对直流电解沉积纳米孪晶Cu微观结构的影响[J]. 金属学报, 2013, 49(5): 635-640.
[8] 彭欣 王佳 山川 王海杰 刘在健 邹妍. 带锈碳钢在流动海水中的长期腐蚀行为[J]. 金属学报, 2012, 48(10): 1260-1266.
[9] 孙建波 柳伟 常炜 张忠铧 李忠涛 于湉 路民旭. 低铬X65管线钢CO2腐蚀产物膜的特征及形成机制[J]. 金属学报, 2009, 45(1): 84-90.
[10] 安百刚; 张学元; 韩恩厚 . 沈阳大气环境下纯铜的初期腐蚀行为研究[J]. 金属学报, 2007, 42(1): 77-81 .
[11] 常国威; 袁军平 . 电流密度对定向凝固组织中柱状晶间距的影响[J]. 金属学报, 2000, 36(1): 30-32 .
[12] 印仁和;曹为民;李亚君;李卓棠;荣国斌. 用临界钝化电流法和液晶法检测金属氧化物膜的缺陷率[J]. 金属学报, 1997, 33(6): 667-672.
[13] 邱竹贤;姚广春;于亚鑫;张中林. 锂盐碳阳极的可湿性与临界电流密度研究[J]. 金属学报, 1994, 30(22): 439-443.
[14] 吴奕初;常香荣;田中卓;肖纪美. 高纯Fe中氢损伤规律的研究[J]. 金属学报, 1992, 28(2): 43-46.