Please wait a minute...
金属学报  2018, Vol. 54 Issue (6): 918-926    DOI: 10.11900/0412.1961.2017.00305
  本期目录 | 过刊浏览 |
横向静磁场对激光熔化增材制造Al-12%Si合金凝固组织的影响
帅三三1, 林鑫2, 肖武泉1, 余建波1, 王江1(), 任忠鸣1
1 上海大学材料科学与工程学院省部共建高品质特殊钢冶金与制备国家重点实验室 上海 200072
2 西北工业大学凝固技术国家重点实验室 西安 710072
Effect of Transverse Static Magnetic Field on Microstructure of Al-12%Si Alloys Fabricated by Powder-BlowAdditive Manufacturing
Sansan SHUAI1, Xin LIN2, Wuquan XIAO1, Jianbo YU1, Jiang WANG1(), Zhongming REN1
1 State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, Shanghai University, Shanghai 200072, China
2 State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
引用本文:

帅三三, 林鑫, 肖武泉, 余建波, 王江, 任忠鸣. 横向静磁场对激光熔化增材制造Al-12%Si合金凝固组织的影响[J]. 金属学报, 2018, 54(6): 918-926.
Sansan SHUAI, Xin LIN, Wuquan XIAO, Jianbo YU, Jiang WANG, Zhongming REN. Effect of Transverse Static Magnetic Field on Microstructure of Al-12%Si Alloys Fabricated by Powder-BlowAdditive Manufacturing[J]. Acta Metall Sin, 2018, 54(6): 918-926.

全文: PDF(7662 KB)   HTML
摘要: 

利用送粉式激光熔化3D打印工艺,研究了外加横向稳恒磁场对3D打印Al-12%Si合金构件凝固组织的影响。结果表明,在有/无横向稳恒磁场下,激光熔化单道薄壁试样的宏观凝固组织未发生明显改变,其主要以白亮带(以α-Al相为主)和灰暗区(以Al-Si共晶相为主)为基本单元叠加构成。而微观组织分析表明,无磁场时灰暗区内的初生α-Al相呈柱状枝晶形态,施加了0.35 T横向稳恒磁场后,试样灰暗区内的初生α-Al相全部转变为等轴枝晶形态,且枝晶臂发达。基于热电磁力及其Hartman无量纲数(用于表征稳恒磁场对金属熔体流动抑制作用的参数)估算分析表明,0.35 T稳恒磁场下,作用于初生α-Al枝晶上的热电磁力可达105 N/m3量级;Hartman数远大于10,表明激光熔化微小金属熔池中强烈的Marigoni以及热溶质对流一定程度上被抑制。分析认为,稳恒磁场下凝固组织灰暗区内α-Al相柱状枝晶向等轴枝晶的转变是固相中热电磁力(约105 N/m3)对枝晶的破碎作用导致,而等轴枝晶发达的枝晶臂则是横向稳恒磁场抑制熔体流动的结果。

关键词 增材制造横向静磁场Al-12%Si合金CET转变热电磁力    
Abstract

Due to the great advantage in manufacturing component with complex structures, additive manufacturing (3D print), essentially the rapid solidification of tiny metallic molten pool (hemisphere like with diameter ranging from dozens of microns to several millimeters) has become an important formation technique. Using powder laser melting, the effect of transverse static magnetic field on the solidified structure of additive manufactured Al-12%Si alloy was studied. The macrostructure was formed by white band (mainly primary α-Al phase) and dark grey area (mainly eutectic phase) and no obvious influence was presented with or without static transverse magnetic field of 0.35 T. However, for the microstructure, the primary α-Al in dark grey area formed as columnar structure without magnetic field was found to transform to dendritic like with developed dendrite arms when under a static transverse magnetic field. The analysis on thermoelectricity and dimensionless Hartman parameter which used to characterize the restriction of static magnetic field on molten flows show that under a static transverse magnetic field of 0.35 T, the thermoelectric magnetic force can be as high as a magnitude of 105 N/m3, and Hartman values is far more than 10. The results indicate that the Marigoni and thermosolutal convection in laser melting pool was restricted. The transform from columnar to equiaxed dendrite of primary α-Al in dark grey area under static magnetic field was attributed to the fragmentation by thermoelectric magnetic force (105 N/m3) in solid phase. In addition, the formation of high order dendrite arms was supposed to be caused by the restriction of static magnetic field on the melt.

Key wordsadditive manufacturing    transverse static magnetic field    Al-12%Si alloy    columnar to equiaxed transition (CET)    thermoelectric magnetic force
收稿日期: 2017-07-21     
ZTFLH:  TG146.2  
基金资助:国家自然科学基金项目Nos.51690162和51604171,中国博士后基金项目Nos.2017T100291和2017M611530,以及西北工业大学凝固技术国家重点实验室开放课题项目Nos.SKLSP201706和SKLSP201602
作者简介:

作者简介 帅三三,男,1988年生,博士

图1  实验设备实物图及磁场设置示意图
图2  Al-12%Si合金粉末形貌及其粒度分布
图3  不同送粉量下单层沉积宏观形貌,不同激光能量和扫描速率下单道薄壁试样致密度曲线,以及最佳参数(送粉量:30 g/min,激光能量:600 W,扫描速率:4.2 mm/s)下制得的单道薄壁试样实物图
图4  3D打印Al-12%Si试样纵截面和侧截面的整体组织形貌
图5  激光熔化Al-12%Si试样不同位置的OM像
图6  高放大倍数条件下激光熔化Al-12%Si试样不同位置的OM像
图7  横向稳恒磁场下熔池中热电磁力对枝晶影响的示意图
[1] Yang S, Huang W D, Liu W J, et al.Research on laser rapid directional solidification with ultra-high temperature gradient[J]. Chin. J. Lasers, 2002, 29: 475(杨森, 黄卫东, 刘文今等. 激光超高温度梯度快速定向凝固研究[J]. 中国激光, 2002, 29: 475)
[2] Kruth J P, Levy G, Klocke F, et al.Consolidation phenomena in laser and powder-bed based layered manufacturing[J]. CIRP Ann., 2007, 56: 730
[3] Kobryn P A, Semiatin S L.The laser additive manufacture of Ti-6Al-4V[J]. JOM, 2001, 53(9): 40
[4] Wang X Y, Chen J, Lin X, et al.Microstructures of laser forming repair 7050 aluminum alloy with AlSi12 powder[J]. Chin. J. Lasers, 2009, 36: 1585(王小艳, 陈静, 林鑫等. AlSi12粉激光成形修复7050铝合金组织[J]. 中国激光, 2009, 36: 1585)
[5] Siddique S, Imran M, Wycisk E, et al.Influence of process-induced microstructure and imperfections on mechanical properties of AlSi12 processed by selective laser melting[J]. J. Mater. Process. Technol., 2015, 221: 205
[6] Song M H, Lin X, Yang G L, et al.Influence of forming atmosphere on the deposition characteristics of 2Cr13 stainless steel during laser solid forming[J]. J. Mater. Process. Technol., 2014, 214: 701
[7] Liu F C, Lin X, Huang C P, et al.The effect of laser scanning path on microstructures and mechanical properties of laser solid formed nickel-base superalloy Inconel 718[J]. J. Alloys Compd., 2011, 509: 4505
[8] Goetz A, Hasler M F.The thermoanalysis of metal single crystals and a new thermoelectric effect of bismuth crystals grown in magnetic fields[J]. Phys. Rev., 1930, 36: 1752
[9] Savitsky E M, Torchinova R S, Turanov S A.Effect of crystallization in magnetic field on the structure and magnetic properties of Bi-Mn alloys[J]. J. Cryst. Growth, 1981, 52: 519
[10] Farrell D E, Chandrasekhar B S, De Guire M R, et al.Superconducting properties of aligned crystalline grains of Y1Ba2Cu3O7-δ[J]. Phys. Rev., 1987, 36B: 4025
[11] Sassa K, Morikawa H, Asai S.Controls of precipitating phase alignment and crystal orientation using high magnetic field[J]. J. Jpn Inst. Met. Mater., 1997, 61: 1283(佐々 健介, 森川拓, 浅井滋生. 強磁場による晶出相の配向と結晶方位の制御[J]. 日本金属学会誌, 1997, 61: 1283)
[12] Tiller W A, Jackson K A, Rutter J W, et al.The redistribution of solute atoms during the solidification of metals[J]. Acta Metall., 1953, 1: 428
[13] Li X, Gagnoud A, Fautrelle Y, et al.Dendrite fragmentation and columnar-to-equiaxed transition during directional solidification at lower growth speed under a strong magnetic field[J]. Acta Mater., 2012, 60: 3321
[14] Li X, Fautrelle Y, Zaidat K, et al.Columnar-to-equiaxed transitions in Al-based alloys during directional solidification under a high magnetic field[J]. J. Cryst. Growth, 2010, 312: 267
[15] Utech H P, Flemings M C.Elimination of solute banding in indium antimonide crystals by growth in a magnetic field[J]. J. Appl. Phys., 1966, 37: 2021
[16] Oreper G M, Szekely J.The effect of an externally imposed magnetic field on buoyancy driven flow in a rectangular cavity[J]. J. Cryst. Growth, 1983, 64: 505
[17] Witt A F, Herman C J, Gatos H C.Czochralski-type crystal growth in transverse magnetic fields[J]. J. Mater. Sci., 1970, 5: 822
[18] Lehmann P, Moreau R, Camel D, et al.Modification of interdendritic convection in directional solidification by a uniform magnetic field[J]. Acta Mater., 1998, 46: 4067
[19] Tewari S N, Shah R, Song H.Effect of magnetic field on the microstructure and macrosegregation in directionally solidified Pb-Sn alloys[J]. Metall. Mater. Trans., 1994, 25A: 1535
[20] Moreau R, Laskar O, Tanaka M, et al.Thermoelectric magnetohydrodynamic effects on solidification of metallic alloys in the dendritic regime[J]. Mater. Sci. Eng., 1993, A173: 93
[21] Li X, Fautrelle Y, Ren Z M.Influence of thermoelectric effects on the solid-liquid interface shape and cellular morphology in the mushy zone during the directional solidification of Al-Cu alloys under a magnetic field[J]. Acta Mater., 2007, 55: 3803
[22] Xuan W D, Ren Z M, Li C J.Effect of a high magnetic field on microstructures of Ni-based superalloy during directional solidification[J]. J. Alloys Compd., 2015, 620: 10
[23] Wang J, Fautrelle Y, Ren Z M, et al.Thermoelectric magnetic force acting on the solid during directional solidification under a static magnetic field[J]. Appl. Phys. Lett., 2012, 101: 251904
[24] Mikelson A E, Karklin Y K.Control of crystallization processes by means of magnetic fields[J]. J. Cryst. Growth, 1981, 52: 524
[25] Wang C J, Dong M, Liu T, et al.Effects of high magnetic fields on the distribution of primary α-Al dendrites of Al-7%Si alloys during solidification[J]. Mater. Rev., 2016, 30(2): 90(王长久, 董蒙, 刘铁等. 强磁场对Al-7%Si合金凝固过程中初生α-Al枝晶分布的影响[J]. 材料导报, 2016, 30(2): 90)
[26] Li X, Gagnoud A, Ren Z M, et al.Investigation of thermoelectric magnetic convection and its effect on solidification structure during directional solidification under a low axial magnetic field[J]. Acta Mater., 2009, 57: 2180
[27] Yu X B.Microstructure and mechanical properties of GH4169 superalloy fabricated by electromagnetic stirring assisted laser solid forming [D]. Nanchang: Nanchang Aeronautical University, 2015(余小斌. 电磁搅拌激光立体成形GH4169合金的组织和力学性能研究 [D]. 南昌: 南昌航空大学, 2015)
[28] Wang W, Cai L, Yang G, et al.Research on the coaxial powder feeding nozzle for laser cladding[J]. Chin. J. Lasers, 2012, 39: 0403003(王维, 才磊, 杨光等. 激光熔覆同轴送粉喷嘴研制[J]. 中国激光, 2012, 39: 0403003)
[29] Dinda G P, Dasgupta A K, Bhattacharya S, et al.Microstructural characterization of laser-deposited Al 4047 alloy[J]. Metall. Mater. Trans., 2013, 44A: 2233
[30] Dinda G P, Dasgupta A K, Mazumder J.Evolution of microstructure in laser deposited Al-11.28%Si alloy[J]. Surf. Coat. Technol., 2012, 206: 2152
[31] Khine Y Y, Walker J S.Thermoelectric magnetohydrodynamic effects during bridgman semiconductor crystal growth with a uniform axial magnetic field[J]. J Cryst. Growth, 1998, 183: 150
[32] Willers B, Eckert S, Nikrityuk P A, et al.Efficient melt stirring using pulse sequences of a rotating magnetic field: Part II. Application to solidification of Al-Si alloys[J]. Metall. Mater. Trans., 2008, 39B: 304
[33] Wu C Y.Effect of strong magnetic field on the microstructure and properties of materials [D]. Dalian: Dalian University of Technology, 2003(吴存有. 强磁场作用力对材料组织和性能的影响 [D]. 大连: 大连理工大学, 2003)
[1] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[2] 穆亚航, 张雪, 陈梓名, 孙晓峰, 梁静静, 李金国, 周亦胄. 基于热力学计算与机器学习的增材制造镍基高温合金裂纹敏感性预测模型[J]. 金属学报, 2023, 59(8): 1075-1086.
[3] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[4] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.
[5] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
[6] 侯旭儒, 赵琳, 任淑彬, 彭云, 马成勇, 田志凌. 热输入对电弧增材制造船用高强钢组织与力学性能的影响[J]. 金属学报, 2023, 59(10): 1311-1323.
[7] 高建宝, 李志诚, 刘佳, 张金良, 宋波, 张利军. 计算辅助高性能增材制造铝合金开发的研究现状与展望[J]. 金属学报, 2023, 59(1): 87-105.
[8] 张百成, 张文龙, 曲选辉. 基于高通量制备的增材制造材料成分设计[J]. 金属学报, 2023, 59(1): 75-86.
[9] 李会朝, 王彩妹, 张华, 张建军, 何鹏, 邵明皓, 朱晓腾, 傅一钦. 搅拌摩擦增材制造技术研究进展[J]. 金属学报, 2023, 59(1): 106-124.
[10] 葛进国, 卢照, 何思亮, 孙妍, 殷硕. 电弧熔丝增材制造2Cr13合金组织与性能各向异性行为[J]. 金属学报, 2023, 59(1): 157-168.
[11] 宋波, 张金良, 章媛洁, 胡凯, 方儒轩, 姜鑫, 张莘茹, 吴祖胜, 史玉升. 金属激光增材制造材料设计研究进展[J]. 金属学报, 2023, 59(1): 1-15.
[12] 方远志, 戴国庆, 郭艳华, 孙中刚, 刘红兵, 袁秦峰. 激光摆动对激光熔化沉积钛合金微观组织及力学性能的影响[J]. 金属学报, 2023, 59(1): 136-146.
[13] 刘广, 陈鹏, 姚锡禹, 陈朴, 刘星辰, 刘朝阳, 严明. CrMoTi中熵合金的性能及其原位合金化增材制造[J]. 金属学报, 2022, 58(8): 1055-1064.
[14] 汤雁冰, 沈新旺, 刘志红, 乔岩欣, 杨兰兰, 卢道华, 邹家生, 许静. 激光选区熔化Inconel 718合金在NaOH溶液中的腐蚀行为[J]. 金属学报, 2022, 58(3): 324-333.
[15] 王迪, 黄锦辉, 谭超林, 杨永强. 激光增材制造过程中循环热输入对组织和性能的影响[J]. 金属学报, 2022, 58(10): 1221-1235.