Please wait a minute...
金属学报  2018, Vol. 54 Issue (6): 943-949    DOI: 10.11900/0412.1961.2017.00285
  本期目录 | 过刊浏览 |
Ti6Al4V表面生物功能纯Mg薄膜制备及性能研究
于晓明1, 谭丽丽1(), 刘宗元1, 杨柯1, 朱忠林2, 李扬德3
1 中国科学院金属研究所 沈阳 110016
2 江苏奥康尼医疗科技发展有限公司 苏州 215123
3 东莞宜安科技股份有限公司 东莞 523808
Preparation and Properties of Biological Functional Magnesium Coating on Ti6Al4V Substrate
Xiaoming YU1, Lili TAN1(), Zongyuan LIU1, Ke YANG1, Zhonglin ZHU2, Yangde LI3
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 Jiangsu OKANI Medical Technology Co., Ltd., Suzhou 215123, China
3 Dong Guan EONTC Co., Ltd., Dongguan 523808, China
全文: PDF(4451 KB)   HTML
摘要: 

利用多弧离子镀技术在Ti6Al4V表面沉积纯Mg薄膜,研究了工作气压对纯Mg薄膜表面质量及性能的影响,研究了纯Mg薄膜的体外降解等性能、抗菌性及生物安全性能。结果表明:多弧离子镀方法可将纯Mg薄膜制备于钛合金表面,薄膜颗粒均匀致密,未见明显缺陷。体外浸泡实验结果表明:由于Ti6Al4V与Mg发生电偶腐蚀而使Mg薄膜迅速降解,1周时间内薄膜基本降解完毕。抗菌实验结果表明:纯Mg薄膜样品对金黄色葡萄球菌具有强烈的杀灭作用,表现出良好的抗细菌感染功能。细胞毒性实验结果表明:纯Mg薄膜可促进骨髓间充质干细胞(rBMSCs)的增殖。

关键词 钛合金纯Mg薄膜生物性能    
Abstract

Currently, metallic biomaterials used in orthopedics are normally bioinert which is hard to integrate with the bone tissue inducing aseptic loosening and easy to get infection, which is the main reason of implantation failure. Mg base metals are considered to be a new generation of revolutionary metallic biomaterials due to its similar density and mechanical properties with natural bone, good biocompatibility, degradability in the body as well as the biological functional ability to promote new bone tissue formation. In addition, the degradation of Mg may increase the local pH which can inhibit the growth of bacteria. In this work, pure Mg coating was deposited on Ti6Al4V substrate by arc ion plating. The effects of different working pressures on the surface quality and properties of Mg coating were investigated. The degradation, antibacterial and biosafety properties were studyied. The results showed that the pure Mg coating can be deposited on the surface of Ti6Al4V substrate and the coating was uniform and smooth. The immersion test in vitro showed that the degradation was very fast because of galvanic corrosion, and the whole process was finished in about one week. The results of antimicrobial experiments showed that the Mg coating can kill staphylococcus aureus and showed good antibacterial function. The results of cytotoxicity test showed that Mg coating promoted rabbit bone marrow mesenchymal stem cells (rBMSCs) growth and proliferation.

Key wordsTi alloy    pure Mg coating    bioproperty
收稿日期: 2017-07-10      出版日期: 2017-11-09
ZTFLH:  TB741  
基金资助:国家自然科学基金项目Nos.51631009、81500897和81400528,以及国家重点研发计划项目No.2016YFC1101804
作者简介:

作者简介 于晓明,男,1981年生,博士

引用本文:

于晓明, 谭丽丽, 刘宗元, 杨柯, 朱忠林, 李扬德. Ti6Al4V表面生物功能纯Mg薄膜制备及性能研究[J]. 金属学报, 2018, 54(6): 943-949.
Xiaoming YU, Lili TAN, Zongyuan LIU, Ke YANG, Zhonglin ZHU, Yangde LI. Preparation and Properties of Biological Functional Magnesium Coating on Ti6Al4V Substrate. Acta Metall Sin, 2018, 54(6): 943-949.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2017.00285      或      http://www.ams.org.cn/CN/Y2018/V54/I6/943

图1  多弧离子镀系统示意图
图2  不同工作气压条件下钛合金表面纯Mg薄膜样品的XRD谱
图3  不同工作气压下钛合金表面纯Mg薄膜的SEM像
图4  不同工作气压条件下纯Mg薄膜的pH值曲线
图5  100 Pa下纯Mg薄膜样品的离子溶出结果
图6  金黄色葡萄球菌(S.aureus)在37 ℃条件下分别与钛合金纯Mg薄膜样品以及钛合金共培养后材料的杀菌能力效果图
图7  rBMSCs细胞在不同稀释浓度的浸提液中培养1、2和3 d的细胞增殖率
[1] Ge J H, Wang Y J, Zheng Y D.Advances in biodegradable and bioabsorbable bone-repaired materials[J]. New Chem. Mater., 2003, 31: 34(葛建华, 王迎军, 郑裕东. 可降解及可吸收性骨科材料研究进展[J]. 化工新型材料 2003, 31: 34)
[2] Geetha M, Singh A K, Asokamani R, et al.Ti based biomaterials, the ultimate choice for orthopaedic implants—A review[J]. Prog. Mater. Sci., 2009, 54: 397
[3] Niinomi M.Mechanical properties of biomedical titanium alloys[J]. Mater. Sci. Eng., 1998, A243: 231
[4] Witte F, Kaese V, Haferkamp H, et al.In vivo corrosion of four magnesium alloys and the associated bone response[J]. Biomaterials, 2005, 26: 3557
[5] Witte F.The history of biodegradable magnesium implants: A review[J]. Acta Bio., 2015, 23: S28
[6] Zhao D W, Witte F, Lu F Q, et al.Current status on clinical applications of magnesium-based orthopaedic implants: A review from clinical translational perspective[J]. Biomaterials, 2016, 112: 287
[7] Tan L L, Yu X M, Wan P, et al.Biodegradable materials for bone repairs: A review[J]. J. Mater. Sci. Technol., 2013, 29: 503
[8] Ren L, Lin X, Tan L L, et al.Effect of surface coating on antibacterial behavior of magnesium based metals[J]. Mater. Lett., 2011, 65: 3509
[9] Robinson D A, Griffith R W, Shechtman D, et al.In vitro antibacterial properties of magnesium metal against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus[J]. Acta Biomater., 2010, 6: 1869
[10] Li Y, Liu G W, Zhai Z J, et al.Antibacterial properties of magnesium in an in vitro and in vivo model of implant-associated MRSA infection[J]. Antimicrob. Agent. Chemoth., 2014, 58: 3936
[11] Wang Q, Jin S, Lin X, et al.Cytotoxic effects of biodegradation of pure Mg and MAO-Mg on tumor cells of MG63 and KB[J]. J. Mater. Sci. Technol., 2014, 30: 487
[12] Qu X H, Jin F C, Hao Y Q, et al.Nonlinear association between magnesium intake and the risk of colorectal cancer[J]. Eur. J. Gastroen Hepat., 2013, 25: 309
[13] Li M, Ren L, Li L H, et al.Cytotoxic effect on osteosarcoma MG-63 cells by degradation of magnesium[J]. J. Mater. Sci. Technol., 2014, 30: 888
[14] Chen L, Fu X K, Pan H B, et al.Biodegradable Mg-Cu alloys with enhanced osteogenesis, angiogenesis, and long-lasting antibacterial effects[J]. Sci. Rep., 2016, 6: 273274
[15] Chen Z T, Mao X L, Tan L L, et al.Osteoimmunomodulatory properties of magnesium scaffolds coated with β-tricalcium phosphate[J]. Biomaterials, 2014, 35: 8553
[16] Zhai Z J, Qu X H, Li H W, et al.The effect of metallic magnesium degradation products on osteoclast-induced osteolysis and attenuation of NF-κB and NFATc1 signaling[J]. Biomaterials, 2014, 35: 6299
[17] Cheng M Q, Wahafu T, Jiang G F, et al.A novel open-porous magnesium scaffold with controllable microstructures and properties for bone regeneration[J]. Sci. Rep., 2016, 6: 24134
[18] Guo Y, Ren L, Liu C, et al.Effect of implantation of biodegradable magnesium alloy on BMP-2 expression in bone of ovariectomized osteoporosis rats[J]. Mater. Sci. Eng., 2013, C33: 4470
[19] Zeng J H, Ren L, Yuan Y J, et al.Short-term effect of magnesium implantation on the osteomyelitis modeled animals induced by Staphylococcus aureus[J]. J. Mater. Sci. Mater. Med., 2013, 24: 2405
[20] Wan P, Wu J Y, Tan L L, et al.Research on super-hydrophobic surface of biodegradable magnesium alloys used for vascular stents[J]. Mater. Sci. Eng., 2013, C33: 2885
[21] Zhao Y H, Wang X Q, Xiao J Q, et al.Ti-Cu-N hard nanocomposite films prepared by pulse biased arc ion plating[J]. Appl. Surf. Sci., 2011, 258: 370
[22] Zhao Y H, Lin G Q, Xiao J Q, et al.Ti/TiN multilayer thin films deposited by pulse biased arc ion plating[J]. Appl. Surf. Sci., 2011, 257: 2683
[23] Ren L, Lin X, Tan L L, et al.Effect of surface coating on antibacterial behavior of magnesium based metals[J]. Mater. Lett., 2011, 65: 3509
[24] Witte F, Fischer J, Nellesen J, et al.In vitro and in vivo corrosion measurements of magnesium alloys[J]. Biomaterials, 2006, 27: 1013
[25] Salunke P, Shanov V, Witte F.High purity biodegradable magnesium coating for implant application[J]. Mater. Sci. Eng., 2011, B176: 1711
[26] Song G, Atrens A.Understanding magnesium corrosion—A framework for improved alloy performance[J]. Adv. Eng. Mater., 2003, 5: 837
[27] Fukumoto S, Sugahara K, Yamamoto A, et al.Improvement of corrosion resistance and adhesion of coating layer for magnesium alloy coated with high purity magnesium[J]. Mater. Trans., 2003, 44: 518
[28] Tsubakino H, Yamamoto A, Fukumoto S, et al.High-purity magnesium coating on magnesium alloys by vapor deposition technique for improving corrosion resistance[J]. Mater. Trans., 2003, 44: 504
[29] Li X K, Gao P, Wan P, et al.Novel bio-functional magnesium coating on porous Ti6Al4V orthopaedic implants: In vitro and in vivo study[J]. Sci. Rep., 2017, 7: 40755
[1] 李学雄,徐东生,杨锐. 双相钛合金高温变形协调性的CPFEM研究[J]. 金属学报, 2019, 55(7): 928-938.
[2] 杜随更,高漫,徐婉婷,王喜锋. TC11/TC17钛合金线性摩擦焊接头界面研究[J]. 金属学报, 2019, 55(7): 885-892.
[3] 黄森森,马英杰,张仕林,齐敏,雷家峰,宗亚平,杨锐. α+β两相钛合金元素再分配行为及其对显微组织和力学性能的影响[J]. 金属学报, 2019, 55(6): 741-750.
[4] 任德春, 苏虎虎, 张慧博, 王健, 金伟, 杨锐. 冷旋锻变形对TB9钛合金显微组织和拉伸性能的影响[J]. 金属学报, 2019, 55(4): 480-488.
[5] 许擎栋, 李克俭, 蔡志鹏, 吴瑶. 脉冲磁场对TC4钛合金微观结构的影响及其机理探究[J]. 金属学报, 2019, 55(4): 489-495.
[6] 闵小华, 向力, 李明佳, 姚凯, 江村聪, 程从前, 土谷浩一. {332}<113>孪晶与等温ω相的组合对不同O含量Ti-15Mo合金力学性能的影响[J]. 金属学报, 2018, 54(9): 1262-1272.
[7] 翟斌, 周凯, 吕鹏, 王海鹏. 自由落体条件下Ti-6Al-4V合金微液滴的快速凝固研究[J]. 金属学报, 2018, 54(5): 824-830.
[8] 徐磊, 郭瑞鹏, 吴杰, 卢正冠, 杨锐. 钛合金粉末热等静压近净成形研究进展[J]. 金属学报, 2018, 54(11): 1537-1552.
[9] 邵珩, 李岩, 南海, 许庆彦. Ti-6Al-4V合金熔模铸造过程中的固态相变微观组织演变的数值模拟[J]. 金属学报, 2017, 53(9): 1140-1152.
[10] 席明哲, 吕超, 吴贞号, 尚俊英, 周玮, 董荣梅, 高士友. 连续点式锻压激光快速成形TC11钛合金的组织和力学性能[J]. 金属学报, 2017, 53(9): 1065-1074.
[11] 刘国怀, 李天瑞, 徐莽, 付天亮, 李勇, 王昭东, 王国栋. 累积叠轧TC4钛合金的组织演化与力学性能[J]. 金属学报, 2017, 53(9): 1038-1046.
[12] 张志强,董利民,关少轩,杨锐. TC16钛合金辊模拉丝过程中的显微组织和力学性能[J]. 金属学报, 2017, 53(4): 415-422.
[13] 康利梅,杨超,李元元. 半固态烧结法制备高强韧新型双尺度结构钛合金[J]. 金属学报, 2017, 53(4): 440-446.
[14] 刘洪喜,李正学,张晓伟,谭军,蒋业华. 热处理对钛合金表面激光原位合成高铌Ti-Al金属间化合物涂层高温抗氧化行为的影响[J]. 金属学报, 2017, 53(2): 201-210.
[15] 张二林, 王晓燕, 憨勇. 医用多孔Ti及钛合金的国内研究现状[J]. 金属学报, 2017, 53(12): 1555-1567.