Please wait a minute...
金属学报  2018, Vol. 54 Issue (4): 494-500    DOI: 10.11900/0412.1961.2017.00274
  本期目录 | 过刊浏览 |
冷拉拔珠光体钢丝的力学性能各向异性研究
季培蓓, 周立初, 周雪峰, 方峰(), 蒋建清
东南大学材料与科学工程学院 南京 211189
Study on Anisotropic Mechanical Properties of Cold Drawn Pearlitic Steel Wire
Peibei JI, Lichu ZHOU, Xuefeng ZHOU, Feng FANG(), Jianqing JIANG
School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
全文: PDF(7898 KB)   HTML
摘要: 

利用拉伸试验机、SEM和TEM研究了冷拉拔珠光体钢丝力学性能的各向异性。结果表明,原始盘条(应变ε=0)中,各向抗拉强度相近;随着钢丝应变的增加,钢丝各向抗拉强度的差异逐渐明显。其中,平行于拉伸轴方向(P样品)和与拉伸轴呈45°方向(I样品)符合应变强化规律;垂直于拉伸轴方向(V样品)抗拉强度稳定在1320 MPa左右。形变钢丝中,平行方向抗拉强度最高,45°方向次之,垂直方向抗拉强度最低。原始盘条中,各向均发生穿晶断裂;形变钢丝中,平行方向的断裂机制为微孔聚集型,45°方向和垂直方向发生穿晶断裂或沿晶断裂。拉伸断口纵截面TEM像表明,平行方向上,位错均匀分布在铁素体片层中,各片层协调形变;垂直方向上,位错在铁素体/渗碳体界面处塞积缠结,产生应力集中直至断裂。表现出明显的各向异性。

关键词 珠光体钢丝冷拉拔各向异性抗拉强度    
Abstract

Cold drawn pearlitic steel wires with ultra-high strength are widely applied in industrial fields such as bridge cables, automobile tire and springs rope. In recent years, the strengthening mechanism and microstructure evolution have been profoundly studied. In order to investigate the influence of microstructure evolution on mechanical properties, the anisotropic mechanical properties of cold drawn pearlitic steel wires were investigated by tensile test, SEM and TEM. Results indicated that the distinctions of tensile strength between three directions (parallel to the tensile axis, inclined to the tensile axis (45°), vertical to the tensile axis) were amplified with increasing strain. The effect of strain strengthening was observed in parallel and inclined directions while the vertical direction remained strength stability in 1320 MPa. The wire rod was isotropic and the fracture mode was transgranular fracture; After cold drawing, the tensile strength reached peaks in parallel direction and valleys in vertical direction. The fracture mechanism of inclined and vertical directions remained transgranular or intergranular fracture while the fracture mechanism of parallel direction was converted into microvoid accumulation fracture. In TEM, the phenomenon was discovered that due to non-homogeneous distribution in vertical direction, dislocations piled up at the boundaries resulting in stress concentration. On the contrary, the dislocations were uniformly distributed which led to homogeneous transformation in parallel direction.

Key wordspearlitic steel wire    cold drawing    anisotropy    tensile strength
收稿日期: 2017-07-05     
ZTFLH:  TG142  
基金资助:国家自然科学基金项目No.51371050,江苏省六大人才高峰项目No.2015-XCL-004,江苏省产学研前瞻性研究项目No.BY2016076-08,江苏省重点研发计划项目No.BE2015097
作者简介:

作者简介 季培蓓,女,1993年生,硕士生

引用本文:

季培蓓, 周立初, 周雪峰, 方峰, 蒋建清. 冷拉拔珠光体钢丝的力学性能各向异性研究[J]. 金属学报, 2018, 54(4): 494-500.
Peibei JI, Lichu ZHOU, Xuefeng ZHOU, Feng FANG, Jianqing JIANG. Study on Anisotropic Mechanical Properties of Cold Drawn Pearlitic Steel Wire. Acta Metall Sin, 2018, 54(4): 494-500.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2017.00274      或      http://www.ams.org.cn/CN/Y2018/V54/I4/494

图1  平行于拉伸轴方向、与拉伸轴呈45°方向和垂直于拉伸轴方向的拉伸样品示意图
图2  样品各向力学性能与应变的关系曲线
图3  不同应变样品的各向工程应力-应变曲线
图4  不同应变珠光体钢丝的纵截面SEM像
图5  不同应变珠光体钢丝的纵截面TEM像
图6  不同应变钢丝的各向拉伸断口形貌
图7  ε=1.4时钢丝的各向拉伸断口纵截面SEM像
图8  ε=1.4时钢丝的各向拉伸断口纵截面TEM像
[1] Zelin M.Microstructure evolution in pearlitic steels during wire drawing[J]. Acta Mater., 2002, 50: 4431
[2] Li Y J, Choi P, Goto S, et al.Evolution of strength and microstructure during annealing of heavily cold-drawn 6.3 GPa hypereutectoid pearlitic steel wire[J]. Acta Mater., 2012, 60: 4005
[3] Read H G, Reynolds Jr W T, Hono K, et al. APFIM and TEM studies of drawn pearlitic wire[J]. Scr. Mater., 1997, 37: 1221
[4] Zhang X D, Godfrey A, Huang X X, et al.Microstructure and strengthening mechanisms in cold-drawn pearlitic steel wire[J]. Acta Mater., 2011, 59: 3422
[5] Embury J D, Fisher R M.The structure and properties of drawn pearlite[J]. Acta Metall., 1966, 14: 147
[6] Buono V T L, Gonzalez B M, Lima T M, et al. Measurement of fine pearlite interlamellar spacing by atomic force microscopy[J]. J. Mater. Sci., 1997, 32: 1005
[7] Zhou L C, Hu X J, Ma C, et al.Effect of pearlitic lamella orientation on deformation of pearlite steel wire during cold drawing[J]. Acta Metall. Sin., 2015, 51: 897(周立初, 胡显军, 马驰等. 珠光体层片取向对冷拔珠光体钢丝形变的影响[J]. 金属学报, 2015, 51: 897)
[8] Fang F, Zhao Y F, Liu P P, et al.Deformation of cementite in cold drawn pearlitic steel wire[J]. Mater. Sci. Eng., 2014, A608: 11
[9] Lamontagne A, Massardier V, Kléber X, et al.Comparative study and quantification of cementite decomposition in heavily drawn pearlitic steel wires[J]. Mater. Sci. Eng., 2015, A644: 105
[10] Li Y J, Choi P, Borchers C, et al.Atom probe tomography characterization of heavily cold drawn pearlitic steel wire[J]. Ultramicroscopy, 2011, 111: 628
[11] Li Y J, Choi P, Borchers C, et al.Atomic-scale mechanisms of deformation-induced cementite decomposition in pearlite[J]. Acta Mater., 2011, 59: 3965
[12] Zhou L C, Fang F, Zhou X F, et al.Cementite nano-crystallization in cold drawn pearlitic wires instigated by low temperature annealing[J]. Scr. Mater., 2016, 120: 5
[13] Li Y J, Raabe D, Herbig M, et al.Segregation stabilizes nanocrystalline bulk steel with near theoretical strength[J]. Phys. Rev. Lett., 2014, 113: 106104
[14] Fang F, Zhou L C, Hu X J, et al.Microstructure and mechanical properties of cold-drawn pearlitic wires affect by inherited texture[J]. Mater. Des., 2015, 79: 60
[15] Zhang X D, Godfrey A, Hansen N, et al.Hierarchical structures in cold-drawn pearlitic steel wire[J]. Acta Mater., 2013, 61: 4898
[16] Zhao T Z, Song H W, Zhang G L, et al.The texture evolution at the center of pearlitic steel wire during drawing and its influence on the mechanical properties[J]. Acta Metall. Sin., 2014, 50: 667(赵天章, 宋鸿武, 张光亮等. 拉拔过程中珠光体钢丝心部的织构演化规律及其对力学性能的影响[J]. 金属学报, 2014, 50: 667)
[17] Zhang X D, Godfrey A, Liu W, et al.Evolutions of microstructure and ferritic micro-orientation and texture in a pearlitic steel wire during cold drawing[J]. Acta Metall. Sin., 2010, 46: 141(张晓丹, Godfrey A, 刘伟等. 珠光体钢丝冷拉拔过程中微观组织及铁素体微区取向与织构演变[J]. 金属学报, 2010, 46: 141)
[18] Kapp M W, Hohenwarter A, Wurster S, et al.Anisotropic deformation characteristics of an ultrafine-and nanolamellar pearlitic steel[J]. Acta Mater., 2016, 106: 239
[19] Kammerhofer C, Hohenwarter A, Scheriau S, et al.Influence of morphology and structural size on the fracture behavior of a nanostructured pearlitic steel[J]. Mater. Sci. Eng., 2013, A585: 190
[20] Hohenwarter A, Taylor A, Stock R, et al.Effect of large shear deformations on the fracture behavior of a fully pearlitic steel[J]. Metall. Mater. Trans., 2011, 42A: 1609
[21] He Y, Xiang S, Shi W, et al.Effect of microstructure evolution on anisotropic fracture behaviors of cold drawing pearlitic steels[J]. Mater. Sci. Eng., 2017, A683: 153
[22] Toribio J, Ayaso F J.Anisotropic fracture behaviour of cold drawn steel: A materials science approach[J]. Mater. Sci. Eng., 2003, A343: 265
[23] Suzuki T, Tomota Y, Isaka M, et al.Strength anisotropy and residual stress in drawn pearlite steel wire[J]. ISIJ Int., 2004, 44: 1426
[24] Zhang X D, Hansen N, Godfrey A, et al.Dislocation-based plasticity and strengthening mechanisms in sub-20 nm lamellar structures in pearlitic steel wire[J]. Acta Mater., 2016, 114: 176
[25] Ju H L, Li B H, Wu Z F, et al.Perpendicular magnetic anisotropy in Co/Ni multilayers studied by anomalous Hall effect[J]. Acta Phys. Sin., 2015, 64: 097501(俱海浪, 李宝河, 吴志芳等. Co/Ni多层膜垂直磁各向异性的研究[J]. 物理学报, 2015, 64: 097501)
[26] Chen Z Y, Cai H N, Wang F C, et al.Investigation on anisotropy of dynamic compressive mechanical properties of cold-rolled Cu sheet[J]. Acta Metall. Sin., 2009, 45: 143(陈志永, 才鸿年, 王富耻等. 冷轧Cu板动态压缩力学性能各向异性的研究[J]. 金属学报, 2009, 45: 143)
[27] Xu Y B, Liu M Z.An in situ study of crack nucleation and propagation in pearlite during deformation[J]. Acta Metall. Sin., 1982, 18: 58(徐永波, 刘民治. 珠光体组织的形变、裂纹形核与扩展微观过程的动态研究[J]. 金属学报, 1982, 18: 58)
[1] 胡斌,李树索,裴延玲,宫声凯,徐惠彬. <111>取向小角偏离对一种镍基单晶高温合金蠕变性能的影响[J]. 金属学报, 2019, 55(9): 1204-1210.
[2] 冯汉臣,闵学刚,魏大圣,周立初,崔世云,方峰. 低温回火对超大形变冷拔珠光体钢丝显微组织和力学性能的影响[J]. 金属学报, 2019, 55(5): 585-592.
[3] 王莉,何禹锋,申健,郑伟,楼琅洪,张健. 第二取向对第三代单晶高温合金热疲劳过程中冷却孔孔周氧化行为的影响研究[J]. 金属学报, 2019, 55(11): 1417-1426.
[4] 何贤美, 童六牛, 高成, 王毅超. Nd含量对磁控溅射Si(111)/Cr/Nd-Co/Cr薄膜结构与磁性的影响[J]. 金属学报, 2019, 55(10): 1349-1358.
[5] 马晓琴, 詹清峰, 李金财, 刘青芳, 王保敏, 李润伟. 倾斜溅射对CoFeB薄膜条纹磁畴结构与磁各向异性的影响[J]. 金属学报, 2018, 54(9): 1281-1288.
[6] 黄明亮, 孙洪羽. 倒装芯片无铅凸点β-Sn晶粒取向与电迁移交互作用[J]. 金属学报, 2018, 54(7): 1077-1086.
[7] 王强, 董蒙, 孙金妹, 刘铁, 苑轶. 强磁场下合金凝固过程控制及功能材料制备[J]. 金属学报, 2018, 54(5): 742-756.
[8] 李旭东, 毛萍莉, 刘晏宇, 刘正, 王志, 王峰. 高应变速率下Mg-3Zn-1Y镁合金的各向异性及变形机制[J]. 金属学报, 2018, 54(4): 557-565.
[9] 李双明, 王斌强, 刘振鹏, 钟宏, 胡锐, 刘毅, 罗锡明. 高熔点金属Ir和Mo电子束区熔中不同取向晶体的竞争生长[J]. 金属学报, 2018, 54(10): 1435-1441.
[10] 林艳丽, 何祝斌, 初冠南, 闫永达. 利用管状试样测试各向异性材料双向应力状态力学性能的新方法[J]. 金属学报, 2017, 53(9): 1101-1109.
[11] 张青松,朱振宇,高杰维,戴光泽,徐磊,冯健. 各向异性和偏轴加载对1050车轮钢疲劳性能的影响[J]. 金属学报, 2017, 53(3): 307-315.
[12] 刘奋军, 傅莉, 陈海燕. 铝合金薄板高转速搅拌摩擦焊接头组织与力学性能[J]. 金属学报, 2017, 53(12): 1651-1658.
[13] 张骏,姚美意,冯炫凯,王志刚,黄娇,戴训,张金龙,周邦新. Zr-Sn-Fe-Cr-(Nb)合金在500 ℃过热蒸汽中的腐蚀各向异性研究*[J]. 金属学报, 2016, 52(12): 1565-1571.
[14] 陈守东,刘相华,刘立忠,宋孟. Cu极薄带轧制中滑移与变形的晶体塑性有限元模拟*[J]. 金属学报, 2016, 52(1): 120-128.
[15] 柏琳娜,刘福平,王邃,江峰,孙军,陈良斌,王丰元. Fe-C-Cu粉末锻造汽车发动机连杆的组织与力学性能*[J]. 金属学报, 2016, 52(1): 41-50.