Please wait a minute...
金属学报  2018, Vol. 54 Issue (4): 494-500    DOI: 10.11900/0412.1961.2017.00274
  本期目录 | 过刊浏览 |
冷拉拔珠光体钢丝的力学性能各向异性研究
季培蓓, 周立初, 周雪峰, 方峰(), 蒋建清
东南大学材料与科学工程学院 南京 211189
Study on Anisotropic Mechanical Properties of Cold Drawn Pearlitic Steel Wire
Peibei JI, Lichu ZHOU, Xuefeng ZHOU, Feng FANG(), Jianqing JIANG
School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
全文: PDF(7898 KB)   HTML
摘要: 

利用拉伸试验机、SEM和TEM研究了冷拉拔珠光体钢丝力学性能的各向异性。结果表明,原始盘条(应变ε=0)中,各向抗拉强度相近;随着钢丝应变的增加,钢丝各向抗拉强度的差异逐渐明显。其中,平行于拉伸轴方向(P样品)和与拉伸轴呈45°方向(I样品)符合应变强化规律;垂直于拉伸轴方向(V样品)抗拉强度稳定在1320 MPa左右。形变钢丝中,平行方向抗拉强度最高,45°方向次之,垂直方向抗拉强度最低。原始盘条中,各向均发生穿晶断裂;形变钢丝中,平行方向的断裂机制为微孔聚集型,45°方向和垂直方向发生穿晶断裂或沿晶断裂。拉伸断口纵截面TEM像表明,平行方向上,位错均匀分布在铁素体片层中,各片层协调形变;垂直方向上,位错在铁素体/渗碳体界面处塞积缠结,产生应力集中直至断裂。表现出明显的各向异性。

关键词 珠光体钢丝冷拉拔各向异性抗拉强度    
Abstract

Cold drawn pearlitic steel wires with ultra-high strength are widely applied in industrial fields such as bridge cables, automobile tire and springs rope. In recent years, the strengthening mechanism and microstructure evolution have been profoundly studied. In order to investigate the influence of microstructure evolution on mechanical properties, the anisotropic mechanical properties of cold drawn pearlitic steel wires were investigated by tensile test, SEM and TEM. Results indicated that the distinctions of tensile strength between three directions (parallel to the tensile axis, inclined to the tensile axis (45°), vertical to the tensile axis) were amplified with increasing strain. The effect of strain strengthening was observed in parallel and inclined directions while the vertical direction remained strength stability in 1320 MPa. The wire rod was isotropic and the fracture mode was transgranular fracture; After cold drawing, the tensile strength reached peaks in parallel direction and valleys in vertical direction. The fracture mechanism of inclined and vertical directions remained transgranular or intergranular fracture while the fracture mechanism of parallel direction was converted into microvoid accumulation fracture. In TEM, the phenomenon was discovered that due to non-homogeneous distribution in vertical direction, dislocations piled up at the boundaries resulting in stress concentration. On the contrary, the dislocations were uniformly distributed which led to homogeneous transformation in parallel direction.

Key wordspearlitic steel wire    cold drawing    anisotropy    tensile strength
收稿日期: 2017-07-05      出版日期: 2017-10-23
ZTFLH:  TG142  
基金资助:国家自然科学基金项目No.51371050,江苏省六大人才高峰项目No.2015-XCL-004,江苏省产学研前瞻性研究项目No.BY2016076-08,江苏省重点研发计划项目No.BE2015097
作者简介:

作者简介 季培蓓,女,1993年生,硕士生

引用本文:

季培蓓, 周立初, 周雪峰, 方峰, 蒋建清. 冷拉拔珠光体钢丝的力学性能各向异性研究[J]. 金属学报, 2018, 54(4): 494-500.
Peibei JI, Lichu ZHOU, Xuefeng ZHOU, Feng FANG, Jianqing JIANG. Study on Anisotropic Mechanical Properties of Cold Drawn Pearlitic Steel Wire. Acta Metall, 2018, 54(4): 494-500.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2017.00274      或      http://www.ams.org.cn/CN/Y2018/V54/I4/494

图1  平行于拉伸轴方向、与拉伸轴呈45°方向和垂直于拉伸轴方向的拉伸样品示意图
图2  样品各向力学性能与应变的关系曲线
图3  不同应变样品的各向工程应力-应变曲线
图4  不同应变珠光体钢丝的纵截面SEM像
图5  不同应变珠光体钢丝的纵截面TEM像
图6  不同应变钢丝的各向拉伸断口形貌
图7  ε=1.4时钢丝的各向拉伸断口纵截面SEM像
图8  ε=1.4时钢丝的各向拉伸断口纵截面TEM像
[1] Zelin M.Microstructure evolution in pearlitic steels during wire drawing[J]. Acta Mater., 2002, 50: 4431
doi: 10.1016/S1359-6454(02)00281-1
[2] Li Y J, Choi P, Goto S, et al.Evolution of strength and microstructure during annealing of heavily cold-drawn 6.3 GPa hypereutectoid pearlitic steel wire[J]. Acta Mater., 2012, 60: 4005
doi: 10.1016/j.actamat.2012.03.006
[3] Read H G, Reynolds Jr W T, Hono K, et al. APFIM and TEM studies of drawn pearlitic wire[J]. Scr. Mater., 1997, 37: 1221
doi: 10.1016/S1359-6462(97)00223-6
[4] Zhang X D, Godfrey A, Huang X X, et al.Microstructure and strengthening mechanisms in cold-drawn pearlitic steel wire[J]. Acta Mater., 2011, 59: 3422
doi: 10.1016/j.actamat.2011.02.017
[5] Embury J D, Fisher R M.The structure and properties of drawn pearlite[J]. Acta Metall., 1966, 14: 147
doi: 10.1016/0001-6160(66)90296-3
[6] Buono V T L, Gonzalez B M, Lima T M, et al. Measurement of fine pearlite interlamellar spacing by atomic force microscopy[J]. J. Mater. Sci., 1997, 32: 1005
doi: 10.1023/A:1018526305659
[7] Zhou L C, Hu X J, Ma C, et al.Effect of pearlitic lamella orientation on deformation of pearlite steel wire during cold drawing[J]. Acta Metall. Sin., 2015, 51: 897(周立初, 胡显军, 马驰等. 珠光体层片取向对冷拔珠光体钢丝形变的影响[J]. 金属学报, 2015, 51: 897)
[8] Fang F, Zhao Y F, Liu P P, et al.Deformation of cementite in cold drawn pearlitic steel wire[J]. Mater. Sci. Eng., 2014, A608: 11
doi: 10.1016/j.msea.2014.04.050
[9] Lamontagne A, Massardier V, Kléber X, et al.Comparative study and quantification of cementite decomposition in heavily drawn pearlitic steel wires[J]. Mater. Sci. Eng., 2015, A644: 105
doi: 10.1016/j.msea.2015.07.048
[10] Li Y J, Choi P, Borchers C, et al.Atom probe tomography characterization of heavily cold drawn pearlitic steel wire[J]. Ultramicroscopy, 2011, 111: 628
doi: 10.1016/j.ultramic.2010.11.010 pmid: 21146309
[11] Li Y J, Choi P, Borchers C, et al.Atomic-scale mechanisms of deformation-induced cementite decomposition in pearlite[J]. Acta Mater., 2011, 59: 3965
doi: 10.1016/j.actamat.2011.03.022
[12] Zhou L C, Fang F, Zhou X F, et al.Cementite nano-crystallization in cold drawn pearlitic wires instigated by low temperature annealing[J]. Scr. Mater., 2016, 120: 5
doi: 10.1016/j.scriptamat.2016.04.002
[13] Li Y J, Raabe D, Herbig M, et al.Segregation stabilizes nanocrystalline bulk steel with near theoretical strength[J]. Phys. Rev. Lett., 2014, 113: 106104
doi: 10.1103/PhysRevLett.113.106104 pmid: 25238372
[14] Fang F, Zhou L C, Hu X J, et al.Microstructure and mechanical properties of cold-drawn pearlitic wires affect by inherited texture[J]. Mater. Des., 2015, 79: 60
doi: 10.1016/j.matdes.2015.04.036
[15] Zhang X D, Godfrey A, Hansen N, et al.Hierarchical structures in cold-drawn pearlitic steel wire[J]. Acta Mater., 2013, 61: 4898
doi: 10.1016/j.actamat.2013.04.057
[16] Zhao T Z, Song H W, Zhang G L, et al.The texture evolution at the center of pearlitic steel wire during drawing and its influence on the mechanical properties[J]. Acta Metall. Sin., 2014, 50: 667(赵天章, 宋鸿武, 张光亮等. 拉拔过程中珠光体钢丝心部的织构演化规律及其对力学性能的影响[J]. 金属学报, 2014, 50: 667)
doi: 10.3724/sp.j.1037.2013.00799
[17] Zhang X D, Godfrey A, Liu W, et al.Evolutions of microstructure and ferritic micro-orientation and texture in a pearlitic steel wire during cold drawing[J]. Acta Metall. Sin., 2010, 46: 141(张晓丹, Godfrey A, 刘伟等. 珠光体钢丝冷拉拔过程中微观组织及铁素体微区取向与织构演变[J]. 金属学报, 2010, 46: 141)
[18] Kapp M W, Hohenwarter A, Wurster S, et al.Anisotropic deformation characteristics of an ultrafine-and nanolamellar pearlitic steel[J]. Acta Mater., 2016, 106: 239
doi: 10.1016/j.actamat.2015.12.037
[19] Kammerhofer C, Hohenwarter A, Scheriau S, et al.Influence of morphology and structural size on the fracture behavior of a nanostructured pearlitic steel[J]. Mater. Sci. Eng., 2013, A585: 190
doi: 10.1016/j.msea.2013.07.032
[20] Hohenwarter A, Taylor A, Stock R, et al.Effect of large shear deformations on the fracture behavior of a fully pearlitic steel[J]. Metall. Mater. Trans., 2011, 42A: 1609
doi: 10.1007/s11661-010-0541-7
[21] He Y, Xiang S, Shi W, et al.Effect of microstructure evolution on anisotropic fracture behaviors of cold drawing pearlitic steels[J]. Mater. Sci. Eng., 2017, A683: 153
doi: 10.1016/j.msea.2016.12.004
[22] Toribio J, Ayaso F J.Anisotropic fracture behaviour of cold drawn steel: A materials science approach[J]. Mater. Sci. Eng., 2003, A343: 265
doi: 10.1016/S0921-5093(02)00364-7
[23] Suzuki T, Tomota Y, Isaka M, et al.Strength anisotropy and residual stress in drawn pearlite steel wire[J]. ISIJ Int., 2004, 44: 1426
doi: 10.2355/isijinternational.44.1426
[24] Zhang X D, Hansen N, Godfrey A, et al.Dislocation-based plasticity and strengthening mechanisms in sub-20 nm lamellar structures in pearlitic steel wire[J]. Acta Mater., 2016, 114: 176
doi: 10.1016/j.actamat.2016.04.040
[25] Ju H L, Li B H, Wu Z F, et al.Perpendicular magnetic anisotropy in Co/Ni multilayers studied by anomalous Hall effect[J]. Acta Phys. Sin., 2015, 64: 097501(俱海浪, 李宝河, 吴志芳等. Co/Ni多层膜垂直磁各向异性的研究[J]. 物理学报, 2015, 64: 097501)
[26] Chen Z Y, Cai H N, Wang F C, et al.Investigation on anisotropy of dynamic compressive mechanical properties of cold-rolled Cu sheet[J]. Acta Metall. Sin., 2009, 45: 143(陈志永, 才鸿年, 王富耻等. 冷轧Cu板动态压缩力学性能各向异性的研究[J]. 金属学报, 2009, 45: 143)
[27] Xu Y B, Liu M Z.An in situ study of crack nucleation and propagation in pearlite during deformation[J]. Acta Metall. Sin., 1982, 18: 58(徐永波, 刘民治. 珠光体组织的形变、裂纹形核与扩展微观过程的动态研究[J]. 金属学报, 1982, 18: 58)
[1] 王强, 董蒙, 孙金妹, 刘铁, 苑轶. 强磁场下合金凝固过程控制及功能材料制备[J]. 金属学报, 2018, 54(5): 742-756.
[2] 李旭东, 毛萍莉, 刘晏宇, 刘正, 王志, 王峰. 高应变速率下Mg-3Zn-1Y镁合金的各向异性及变形机制[J]. 金属学报, 2018, 54(4): 557-565.
[3] 林艳丽, 何祝斌, 初冠南, 闫永达. 利用管状试样测试各向异性材料双向应力状态力学性能的新方法[J]. 金属学报, 2017, 53(9): 1101-1109.
[4] 张青松,朱振宇,高杰维,戴光泽,徐磊,冯健. 各向异性和偏轴加载对1050车轮钢疲劳性能的影响[J]. 金属学报, 2017, 53(3): 307-315.
[5] 刘奋军, 傅莉, 陈海燕. 铝合金薄板高转速搅拌摩擦焊接头组织与力学性能[J]. 金属学报, 2017, 53(12): 1651-1658.
[6] 张骏,姚美意,冯炫凯,王志刚,黄娇,戴训,张金龙,周邦新. Zr-Sn-Fe-Cr-(Nb)合金在500 ℃过热蒸汽中的腐蚀各向异性研究*[J]. 金属学报, 2016, 52(12): 1565-1571.
[7] 柏琳娜,刘福平,王邃,江峰,孙军,陈良斌,王丰元. Fe-C-Cu粉末锻造汽车发动机连杆的组织与力学性能*[J]. 金属学报, 2016, 52(1): 41-50.
[8] 陈守东,刘相华,刘立忠,宋孟. Cu极薄带轧制中滑移与变形的晶体塑性有限元模拟*[J]. 金属学报, 2016, 52(1): 120-128.
[9] 苟少秋,周邦新,谢世敬,徐龙,姚美意,李强. Zr-4合金在LiOH水溶液中腐蚀时氧化膜生长各向异性的研究*[J]. 金属学报, 2015, 51(8): 993-1000.
[10] 周立初,胡显军,马驰,周雪峰,蒋建清,方峰. 珠光体层片取向对冷拔珠光体钢丝形变的影响*[J]. 金属学报, 2015, 51(8): 897-903.
[11] 姬书得,温泉,马琳,李继忠,张利. TC4钛合金搅拌摩擦焊厚度方向的显微组织*[J]. 金属学报, 2015, 51(11): 1391-1399.
[12] 王效光,李嘉荣,喻健,刘世忠,史振学,岳晓岱. DD9单晶高温合金拉伸性能各向异性[J]. 金属学报, 2015, 51(10): 1253-1260.
[13] 刘永康, 黄海友, 谢建新. 连续柱状晶组织CuNi10Fe1Mn合金变形行为的各向异性[J]. 金属学报, 2015, 51(1): 40-48.
[14] 赵天章, 宋鸿武, 张光亮, 程明, 张士宏. 拉拔过程中珠光体钢丝心部的织构演化规律及其对力学性能的影响*[J]. 金属学报, 2014, 50(6): 667-673.
[15] 邵媛媛, 杨平, 毛卫民. 电工钢柱状晶热、冷轧时晶界作用分析[J]. 金属学报, 2014, 50(3): 259-268.