Please wait a minute...
金属学报  2017, Vol. 53 Issue (10): 1227-1237    DOI: 10.11900/0412.1961.2017.00270
  研究论文 本期目录 | 过刊浏览 |
血管支架用可降解金属研究进展
郑玉峰(), 杨宏韬
北京大学工学院材料科学与工程系 北京 100871
Research Progress in Biodegradable Metals forStent Application
Yufeng ZHENG(), Hongtao YANG
Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China
引用本文:

郑玉峰, 杨宏韬. 血管支架用可降解金属研究进展[J]. 金属学报, 2017, 53(10): 1227-1237.
Yufeng ZHENG, Hongtao YANG. Research Progress in Biodegradable Metals forStent Application[J]. Acta Metall Sin, 2017, 53(10): 1227-1237.

全文: PDF(4431 KB)   HTML
  
摘要: 

在过去的20年间,随着对可降解金属研究的不断深入,从合金成分设计到熔炼制造加工,从毛细管到支架激光加工和药物涂覆等相关技术不断成熟。可降解金属支架也从一个概念发展为实际产品,并形成3个材料体系分支:可降解镁合金支架已经开展了大量的动物实验和临床实验,结果显示其良好的表现和临床安全性,Biotronik公司生产的可降解镁合金产品Magmaris在2016年获得CE认证;可降解铁合金支架目前处在动物实验阶段,注氮铁合金支架具有优异的力学性能,动物实验结果显示注氮铁支架具有良好的生物相容性;可降解锌合金支架近几年才得到人们的关注,目前的体内动物实验研究结果显示,纯Zn丝在小鼠体内具有良好的降解性能和生物相容性,暂未见体内支架研究报道。本文在综合评述可降解金属支架材料的研究现状基础上,展望了可降解金属支架在性能优化、药物洗脱和智能化方面的未来发展趋势。

关键词 可降解金属支架镁合金铁合金锌合金生物相容性体内实验降解机制    
Abstract

During the last two decades, a great amount of researches have been focused on biodegradable metals. Technologies from alloy design to melting, manufacturing and processing, from micro-tube to stent laser processing and drug eluting coating have been improved and optimized continuously. Biodegradable metallic stent has evolved from a concept to a real product and generated three branches of material system. A large amount of animal tests and clinical tests have been carried out to investigate biodegradable magnesium stents. Results of clinical study have indicated that the magnesium stent is feasible, with favourable safety and performance outcomes. More importantly, Biotronik won CE Mark for Magmaris bioresorbable stent in 2016. Researches of biodegradable iron stents are still in the stage of animal tests. The nitrided iron stent possesses excellent mechanical properties. Results showed a good long-term biocompatibility of nitrided iron stent in rabbit and porcine model. Biodegradable zinc stent has only been introduced in recent years. Only a few in vivo studies have been reported with zinc wires implanted in rats. Results showed a good degradation behavior and biocompatibility of zinc wires. In this paper, the current research status of biodegradable metallic stents is reviewed, and the future research and development in mechanical property optimization, drug eluting and intelligence is proposed.

Key wordsbiodegradable metallic stent    magnesium alloy    iron alloy    zinc alloy    biocompatibility    in vivo    degradation mechanism
收稿日期: 2017-07-04     
ZTFLH:  R318.08  
基金资助:国家重点研发计划项目No.2016YFC1102402和国家自然科学基金重点项目 No.51431002
作者简介:

作者简介 郑玉峰,男,1973年生,教授,博士

图1  血管修复过程中可降解支架降解行为与力学完整性的匹配[1]
图2  可降解镁合金AMS-3.0体内降解机制[23]
Criterion Constraint
Biodegradation Mechanical integrity for 3~6 months; Full absorption in 12~24 months
Biocompatibility Non-toxic and non-inflammatory; No allergenic potential; No harmful
release or retention of particles
Mechanical Yield strength>200 MPa; Ultimate tensile strength>300 MPa; Yield
properties strength : elastic modulus ratio>0.16; Elongation to failure>15%~18%;
Elastic recoil on expansion<4%
Microstructure Homogeneous and approximately isotopic
Small grain size <30 μm
Corrosion rate Penetration rate<0.02 mma-1
表1  可降解支架材料性能要求[9]
Test Stent system Experiment Biocompatibility Degradation Ref.
model time
Animal AE21 Domestic No thromboembolic events, 40% loss of 89 d [17]
test pigs, coronary lumen diameter corresponding to
artery neointimal formation, 25% re-enlargement
caused by vascular remodeling resulting
from the loss of mechanical integrity
between days 35 and 56
AZ91 Dogs, Lumen was clear and no elastic recoil and 7 d [18]
coronary or thrombosis, moderate intimal hyperplasia
femoral artery at 14 d
AZ31B Rabbits, Lumen area was significantly greater, the 120 d [19]
P(LA-TMC)+ abdominal neointimal area was significantly smaller
sirolimus aorta and endothelialization was delayed at 30 d
in coated group
WE43 Minipigs, Inhibitory effect on the smooth muscle 98 d [20]
coronary cells, rapid endothelialization, thin layer of
artery neointima covering the stent after 6 d,
degradation caused inflammation and
intimal hyperplasia
AMS Pigs, No signs of ongoing inflammation, 2 months [21]
coronary smallest lumen area at 3 months because
artery of negative vascular remodeling
AMS Pigs, Safe and with less neointimal formation - [22]
coronary compared with stainless stent, lumen area
artery did not change
AMS-3.0 Pigs, Equivalent to TAXUS Liberte regrading 180 d [23]
PLGA+ coronary late luminal loss, intimal area, fibrin
paclitaxel artery score and endothelialization. Inflammation
score was high at 28 d but disappeared at
later time
Clinical AMS Preterm baby, No relevant inflammatory reaction to the 5 months [24]
study pulmonary stent material, minimal alteration of the
artery vessel wall and an increase of the arterial
diameter after stenting
AMS Newborn, 15 d after implantation, blood velocity - [25]
aortic arch increased significantly, blood perfusion
recovered, lumen diameter increased
from 1.5~1.8 mm to 2~2.8 mm
AMS 20 patients The clinical patency rate was 89.5% after 3 - [26]
months, no blood toxicity was found
PROGRESS- 63 patients No myocardial infarction, subacute or late 4 months [27]
AMS thrombosis, or death. Angiography at 4
months showed an increased diameter
stenosis of 48.4. Overall target lesion
revascularization rate was 45% after 1 a.
Neointimal growth and negative
remodeling were the main mechanisms
of restenosis
Biosolve-I 46 patients Target lesion failure was 7% at 12 months. - [28]
DREAMS, A significant reduction of lumen area at 6
PLGA+ months and 12 months follow-up. No cardiac
paclitaxel death or scaffold thrombosis
Biosolve-II 123 patients A preservation of the scaffold area with a 12 months [8,29]
DREAMS 2G, low mean neointmal area. Target lesion
PLLA+ failure was 4%. No definite or probable
sirolimus scaffold thrombosis was observed. QCA
parameters remained stable from 6 months
to 12 months. Target lesion failure was
3.4% at 12 months
表2  可降解镁合金支架体内实验[17-29]
图2  可降解镁合金AMS-3.0体内降解机制[23]
Stent system Animal model Biocompatibility Exp. period Ref.
Iron Rabbits, No thromboembolic complications, no 6~18 months [35]
descending adverse events. No significant neointimal
aorta proliferation, no pronounced inflammatory
response and no systemic toxicity
Iron Pigs, No signs of iron overload or iron-related organ 360 d [36]
descending aorta toxicity, no local or systemic toxicity
Iron Pigs, coronary At 28 d, no stent particle embolization or thrombosis 28 d [37]
artery and no excess inflammation, or fibrin deposition
Iron Rats, artery Substantial corrosion at 22 d, a voluminous 9 months [38]
lumen or wall corrosion product retained within the vessel
wall at 9 months. Implant in artery lumen
experienced minimal corrosion
Nitrided iron Minipigs, iliac Endothelialization after 1 month. Slightly lumen loss 12 months [39]
artery at 12 months. No thrombosis or local tissue necrosis
Nitrided iron Zn+ Rabbits, Complete endothelialization after 3 months, 13 months [40]
PDLLA+ abdominal slight inflammation during implantation,
sirolimus aorta no necrosis and systemic toxicity
Iron, nitrided iron Rabbits, Endothelialization after 7 d. Slight 53 months [7]
abdominal inflammation during implantation. No
aorta,pigs, necrosis and systemic toxicity. Corrosion
coronary artery products can be cleaned by macrophages
表3  可降解铁合金支架体内实验[7,35-40]
图3  可降解注氮铁支架体内降解机制[34]
Implant Animal model Biocompatibility Experimental Ref.
period
Zinc Rat, abdominal Retained about 70% of its original cross 6 months [46]
wire aorta wall sectional area after 4 months, after which
degradation was observed to increase
rapidly. Corrosion products consisted
of ZnO, ZnCO3 and trace of Ca/P
Zinc Rat, abdominal A complete endothelial layer at 2.5 months 6 months [47]
wire aorta wall and stable appearance at 6.5 months.
Smooth muscle cells remained stable at
6.5 months, no pronounced chronic
inflammation
ZnAl Rat, abdominal No acute and chronic inflammatory were 6 months [48]
wire aorta wall presented, no necrosis. Cross-section was
reduction 40%~50% at 6 months
ZnAl Rat, abdominal Inflammatory cells were able to penetrate 6 months [49]
wire aorta wall the corrosion layer of ZnAl implant. A
delayed entrance of inflammatory cells
into corrosion layer of pure Zn was observed
ZnLi Rat, abdominal Degradation rates were 0.008 and 0.045 mm/a 12 months [50]
wire aorta wall at 2 and 12 months, respectively. No neointimal
hyperplasia. Inflammation and neointima
thickness was slightly higher for ZnLi than Zn
Zinc Rat, abdominal Intense fibrous encapsulation of the wire, steady 20 months [51]
wire aorta wall corrosion without local toxicity for up to 20
months. Chronic inflammation at 5~8 months
but subsided between 10~20 months
Zinc Rabbit, No severe inflammation, platelet aggregation, 12 months [52]
stent abdominal thrombosis formation or obvious intimal
aorta hyperplasia was observed
表4  可降解锌合金丝材体内实验[46-52]
图4  生理环境下Zn-H2O和Zn-C-H2O体系Pourbaix图[51] (y轴为电极电位E)
图5  纯Zn支架体内降解机制[52]
[1] Zheng Y F, Gu X N, Witte F.Biodegradable metals[J]. Mater. Sci. Eng., 2014, R77: 1
[2] Zheng Y F, Wu Y H.Revolutionizing metallic biomaterials[J]. Acta. Metall. Sin., 2017, 53: 257(郑玉峰,吴远浩. 处在变革中的医用金属材料[J]. 金属学报,2017, 53: 257)
[3] Yu Y, Zhang W C, Duan X R.Study on microstructure and properties of thin tube of AZ31 magnesium alloy by extrusion technology[J]. Powder Metall. Technol., 2013, 31 : 201(于洋, 张文丛, 段祥瑞. AZ31镁合金细管静液挤压工艺及组织性能分析[J]. 粉末冶金技术, 2013, 31 : 201)
[4] Liu F, Chen C X, Niu J L, et al.The processing of Mg alloy micro-tubes for biodegradable vascular stents[J]. Mater. Sci. Eng., 2015, C48: 400
[5] Liu X W, Sun J K, Yang Y H, et al.In vitro investigation of ultra-pure Zn and its mini-tube as potential bioabsorbable stent material[J]. Mater. Lett., 2015, 161: 53
[6] Grogan J A, Leen S B, Mchugh P E.Comparing coronary stent material performance on a common geometric platform through simulated bench testing[J]. J. Mech. Behav. Biomed. Mater., 2012, 12: 129
[7] Lin W J, Qin L, Qi H P, et al.Long-term in vivo corrosion behavior, biocompatibility and bioresorption mechanism of a bioresorbable nitrided iron scaffold[J]. Acta Biomater., 2017, 54: 454
[8] Haude M, Ince H, Abizaid A, et al.Sustained safety and performance of the second-generation drug-eluting absorbable metal scaffold in patients with de novo coronary lesions: 12-month clinical results and angiographic findings of the BIOSOLVE-II first-in-man trial[J]. Eur. Heart J., 2016, 37: 2701
[9] Bowen P K, Shearier E R, Zhao S, et al.Biodegradable metals for cardiovascular stents: From clinical concerns to recent Zn-alloys[J]. Adv. Healthc. Mater., 2016, 5: 1121
[10] Zheng Y F, Liu B, Gu X N.Research progress in biodegradable metallic materials for medical application[J]. Mater. Rev., 2009, 23(1): 1(郑玉峰, 刘彬, 顾雪楠. 可生物降解性医用金属材料的研究进展[J]. 材料导报, 2009, 23(1): 1)
[11] Sigel H.Metal Ions in Biological System[M]. New York: Marcel Dekker Inc, 1986: 1
[12] Bowman B A, Russell R M.Present Knowledge in Nutrition[M]. 8th Ed., Washington, DC: International Life Science Institute, 2001: 1
[13] Fawcett W, Haxby E, Male D A.Magnesium: Physiology and pharmacology[J]. Br. J. Anaesth., 1999, 83: 302
[14] Gu X N, Zheng Y F, Cheng Y, et al.In vitro corrosion and biocompatibility of binary magnesium alloys[J]. Biomaterials, 2009, 30: 484
[15] Ma J, Zhao N, Zhu D H.Biphasic responses of human vascular smooth muscle cells to magnesium ion[J]. J. Biomed. Mater. Res., 2016, 104A: 347
[16] Zhao N, Zhu D H.Endothelial responses of magnesium and other alloying elements in magnesium-based stent materials[J]. Metallomics, 2015, 7: 118
[17] Heublein B, Rohde R, Kaese V, et al.Biocorrosion of magnesium alloys: A new principle in cardiovascular implant technology?[J]. Heart, 2003, 89: 651
[18] Yue Y N, Wang L L, Yang N, et al.Effectiveness of biodegradable magnesium alloy stents in coronary artery and femoral artery[J]. J. Interv. Cardiol., 2015, 28: 358
[19] Li H W, Zhong H S, Xu K, et al.Enhanced efficacy of sirolimus-eluting bioabsorbable magnesium alloy stents in the prevention of restenosis[J]. J. Endovasc. Ther., 2011, 18: 407
[20] Mario C D, Griffiths H, Goktekin O, et al.Drug-eluting bioabsorb able magnesium stent[J]. J. Interv. Cardiol., 2004, 17: 391
[21] Maeng M, Jensen L O, Falk E, et al.Negative vascular remode-lling after implantation of bioabsorbable magnesium alloy stents in porcine coronary arteries: A randomised comparison with bare-metal and sirolimus-eluting stents[J]. Heart, 2009, 95: 241
[22] Waksman R, Pakala R, Kuchulakanti P K, et al.Safety and efficacy of bioabsorbable magnesium alloy stents in porcine coronary arteries[J]. Catheter. Cardiovasc. Interv., 2006, 68: 607
[23] Wittchow E, Adden N, Riedmueller J, et al.Bioresorbable drug-eluting magnesium-alloy scaffold: Design and feasibility in a porcine coronary model[J]. EuroIntervention, 2013, 8: 1441
[24] Zartner P, Buettner M, Singer H, et al.First biodegradable metal stent in a child with congenital heart disease: Evaluation of macro and histopathology[J]. Catheter. Cardiovasc. Interv., 2007, 69: 443
[25] Schranz D, Zartner P, Michel-Behnke I, et al.Bioabsorbable metal stents for percutaneous treatment of critical recoarctation of the aorta in a newborn[J]. Catheter. Cardiovasc. Interv., 2006, 67: 671
[26] Peeters P, Bosiers M, Verbist J, et al.Preliminary results after application of absorbable metal stents in patients with critical limb ischemia[J]. J. Endovasc. Ther., 2005, 12: 1
[27] Erbel R, Mario C D, Bartunek J, et al.Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: A prospective, non-randomised multicentre trial[J]. Lancet, 2007, 369: 1869
[28] Haude M, Erbel R, Erne P, et al.Safety and performance of the drug-eluting absorbable metal scaffold (DREAMS) in patients with de-novo coronary lesions: 12 month results of the prospective, multicentre, first-in-man BIOSOLVE-I trial[J]. Lancet, 2013, 381: 836
[29] Haude M, Ince H, Abizaid A, et al.Safety and performance of the second-generation drug-eluting absorbable metal scaffold in patients with de-novo coronary artery lesions (BIOSOLVE-II): 6 month results of a prospective, multicentre, non-randomised, first-in-man trial[J]. Lancet, 2016, 387: 31
[30] Andrews N C.Disorders of iron metabolism[J]. New Engl. J. Med., 1999, 341: 1986
[31] Hermawan H, Dubé D, Mantovani D.Developments in metallic biodegradable stents[J]. Acta Biomater., 2010, 6: 1693
[32] Mueller P P, May T, Perz A, et al.Control of smooth muscle cell proliferation by ferrous iron[J]. Biomaterials, 2006, 27: 2193
[33] Zhu S F, Huang N, Xu L, et al.Biocompatibility of pure iron: in vitro assessment of degradation kinetics and cytotoxicity on endothelial cells[J]. Mater. Sci. Eng., 2009, C29: 1589
[34] Lin W J, Zhang D Y, Zhang G, et al.Design and characterization of a novel biocorrodible iron-based drug-eluting coronary scaffold[J]. Mater. Des., 2016, 91: 72
[35] Peuster M, Wohlsein P, Brügmann M, et al.A novel approach to temporary stenting: Degradable cardiovascular stents produced from corrodible metal-results 6-18 months after implantation into New Zealand white rabbits[J]. Heart, 2001, 86: 563
[36] Peuster M, Hesse C, Schloo T, et al.Long-term biocompatibility of a corrodible peripheral iron stent in the porcine descending aorta[J]. Biomaterials, 2006, 27: 4955
[37] Waksman R, Pakala R, Baffour R, et al.Short-term effects of biocorrodible iron stents in porcine coronary arteries[J]. J. Interv. Cardiol., 2008, 21: 15
[38] Pierson D, Edick J, Tauscher A, et al.A simplified in vivo approach for evaluating the bioabsorbable behavior of candidate stent materials[J]. J. Biomed. Mater. Res., 2012, 100B: 58
[39] Peuster M, Hesse C, Schloo T, et al.Long-term biocompatibility of a corrodible peripheral iron stent in the porcine descending aorta[J]. Biomaterials, 2006, 27: 4955
[40] Lin W J, Zhang D Y, Zhang G, et al.Design and characterization of a novel biocorrodible iron-based drug-eluting coronary scaffold[J]. Mater. Des., 2016, 91: 72
[41] Hermawan H, Purnama A, Dube D, et al.Fe-Mn alloys for metallic biodegradable stents: Degradation and cell viability studies[J]. Acta Biomater., 2010, 6: 1852
[42] Kaur K, Gupta R, Saraf S A, et al.Zinc: The metal of life[J]. Compr. Rev. Food. Sci. Food Saf., 2014, 13: 358
[43] Little P J, Bhattacharya R, Moreyra A E, et al.Zinc and cardiovascular disease[J]. Nutrition, 2010, 26: 1050
[44] Ma J, Zhao N, Zhu D H.Endothelial cellular responses to biodegradable metal zinc[J]. ACS Biomater. Sci. Eng., 2015, 1: 1174
[45] Ma J, Zhao N, Zhu D H.Bioabsorbable zinc ion induced biphasic cellular responses in vascular smooth muscle cells[J]. Sci. Rep., 2016, 6: 26661
[46] Bowen P K, Drelich J, Goldman J.Zinc exhibits ideal physiological corrosion behavior for bioabsorbable stents[J]. Adv. Mater., 2013, 25: 2577
[47] Bowen P K, Guillory II R J, Shearier E R, et al. Metallic zinc exhibits optimal biocompatibility for bioabsorbable endovascular stents[J]. Mater. Sci. Eng., 2015, C56: 467
[48] Bowen P K, Seitz J M, Guillory II R J, et al. Evaluation of wrought Zn-Al alloys (1, 3, 5 wt % Al) through mechanical and in vivo testing for stent applications [J]. J. Biomed. Mater. Res., 2017, B, doi: 10.1002/jbm.b.33850
[49] Guillory II R J, Bowen P K, Hopkins S P, et al. Corrosion characteristics dictate the long-term inflammatory profile of degradable zinc arterial implants[J]. ACS Biomater. Sci. Eng., 2016, 2: 2355
[50] Zhao S, Seitz J M, Eifler R, et al.Zn-Li alloy after extrusion and drawing: Structural, mechanical characterization, and biodegradation in abdominal aorta of rat[J]. Mater. Sci. Eng., 2017, C76: 301
[51] Drelich A, Zhao S, Guillory II R J, et al. Long-term surveillance of zinc implant in murine artery: Surprisingly steady biocorrosion rate[J]. Acta Biomater., 2017, 58: 539
[52] Yang H T, Wang C, Liu C Q, et al.Evolution of the degradation mechanism of pure zinc stent in the one-year study of rabbit abdominal aorta model, Biomaterials, 2017, doi: 10.1016/j.biomaterials.2017.08.022
[53] Nakazawa G, Granada J F, Alviar C L, et al.Anti-CD34 antibodies immobilized on the surface of sirolimus-eluting stents enhance stent endothelialization[J]. JACC Cardiovasc. Interv., 2010, 3: 68
[54] Swanson N, Hogrefe K, Javed Q, et al.Vascular endothelial growth factor (VEGF)-eluting stents: in vivo effects on thrombosis, endothelialization and intimal hyperplasia[J]. J. Invasive Cardiol., 2003, 15: 688
[1] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[2] 邵晓宏, 彭珍珍, 靳千千, 马秀良. 镁合金LPSO/SFs结构间{101¯2}孪晶交汇机制的原子尺度研究[J]. 金属学报, 2023, 59(4): 556-566.
[3] 王鲁宁, 尹玉霞, 石章智, 韩倩倩. 医用可降解锌合金的生物相容性评价研究进展[J]. 金属学报, 2023, 59(3): 319-334.
[4] 沈朝, 王志鹏, 胡波, 李德江, 曾小勤, 丁文江. 镁合金抗高温氧化机理研究进展[J]. 金属学报, 2023, 59(3): 371-386.
[5] 朱云鹏, 覃嘉宇, 王金辉, 马鸿斌, 金培鹏, 李培杰. 机械球磨结合粉末冶金制备AZ61超细晶镁合金的组织与性能[J]. 金属学报, 2023, 59(2): 257-266.
[6] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
[7] 彭立明, 邓庆琛, 吴玉娟, 付彭怀, 刘子翼, 武千业, 陈凯, 丁文江. 镁合金选区激光熔化增材制造技术研究现状与展望[J]. 金属学报, 2023, 59(1): 31-54.
[8] 崔振铎, 朱家民, 姜辉, 吴水林, 朱胜利. Ti及钛合金表面改性在生物医用领域的研究进展[J]. 金属学报, 2022, 58(7): 837-856.
[9] 陈扬, 毛萍莉, 刘正, 王志, 曹耕晟. 高速冲击载荷下预压缩AZ31镁合金的退孪生行为与动态力学性能[J]. 金属学报, 2022, 58(5): 660-672.
[10] 曾小勤, 王杰, 应韬, 丁文江. 镁及其合金导热研究进展[J]. 金属学报, 2022, 58(4): 400-411.
[11] 罗旋, 韩芳, 黄天林, 吴桂林, 黄晓旭. 层状异构Mg-3Gd合金的微观组织和力学性能[J]. 金属学报, 2022, 58(11): 1489-1496.
[12] 李少杰, 金剑锋, 宋宇豪, 王明涛, 唐帅, 宗亚平, 秦高梧. “工艺-组织-性能”模拟研究Mg-Gd-Y合金混晶组织[J]. 金属学报, 2022, 58(1): 114-128.
[13] 钱漪, 袁广银. 可降解锌合金血管支架的研究现状、面临的挑战与对策思考[J]. 金属学报, 2021, 57(3): 272-282.
[14] 郑玉峰, 夏丹丹, 谌雨农, 刘云松, 徐钰倩, 温鹏, 田耘, 赖毓霄. 增材制造可降解金属医用植入物[J]. 金属学报, 2021, 57(11): 1499-1520.
[15] 王慧远, 夏楠, 布如宇, 王珵, 查敏, 杨治政. 低合金化高性能变形镁合金研究现状及展望[J]. 金属学报, 2021, 57(11): 1429-1437.