Please wait a minute...
金属学报  2017, Vol. 53 Issue (10): 1311-1316    DOI: 10.11900/0412.1961.2017.00268
  研究论文 本期目录 | 过刊浏览 |
医用无镍不锈钢的研究与应用
王青川, 张炳春, 任伊宾, 杨柯()
中国科学院金属研究所 沈阳 110016
Research and Application of Biomedical Nickel-Free Stainless Steels
Qingchuan WANG, Bingchun ZHANG, Yibin REN, Ke YANG()
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

王青川, 张炳春, 任伊宾, 杨柯. 医用无镍不锈钢的研究与应用[J]. 金属学报, 2017, 53(10): 1311-1316.
Qingchuan WANG, Bingchun ZHANG, Yibin REN, Ke YANG. Research and Application of Biomedical Nickel-Free Stainless Steels[J]. Acta Metall Sin, 2017, 53(10): 1311-1316.

全文: PDF(2855 KB)   HTML
  
摘要: 

医用无镍不锈钢比传统不锈钢具有更加优异的综合性能,在骨组织和血管修复等医疗器械领域中具有广阔的应用前景。近些年无镍不锈钢作为医用金属材料的优异性能正在被逐步挖掘,这对开发具有更高服役安全性和生物相容性的医疗器械具有重要意义。本文主要综述了无镍不锈钢在合金设计、力学性能、耐蚀性和生物相容性方面的研究进展以及产品开发现状,展望了这一新型医用金属材料的未来发展趋势。

关键词 医用不锈钢无镍高氮骨修复血管支架    
Abstract

Biomedical nickel-free stainless steels acquire better comprehensive properties than the traditional stainless steels, with wide application prospect in medical devices for bone and vascular repair. As a new biomaterial, in recent years, the excellent properties of nickel-free stainless steels are gradually verified, which is meaningful for developing medical devices with higher safety and biocompatibility. In this paper, the research progress on alloy design, mechanical properties, corrosion resistance and biocompatibility of nickel-free stainless steels and the current application status are reviewed, and the future tendency on research and development for this new metallic biomaterial is also proposed.

Key wordsbiomedical stainless steel    nickel-free    high nitrogen    bone repair    vascular stent
收稿日期: 2017-07-03     
ZTFLH:  TG142.71  
基金资助:国家自然科学基金项目No.31370976
作者简介:

作者简介 王青川,男,1987年生,博士

图1  高氮无镍不锈钢相图及组织的实验结果[18]
图2  冷变形对2种N含量无镍不锈钢极化曲线的影响[39]
图3  骨和植入物界面的组织和生物力学分析[43]
图4  猪冠状动脉植入无镍不锈钢支架后内膜增生降低[51]
[1] Park J, Lakes R S.Biomaterials: An Introduction[M]. 3rd Ed., New York: Springer Science & Business Media, 2007: 99
[2] O'Brien B J, Stinson J S, Larsen S R, et al. A platinum-chromium steel for cardiovascular stents[J]. Biomaterials, 2010, 31: 3755
[3] Ren L, Yang K.Bio-functional design for metal implants, a new concept for development of metallic biomaterials[J]. J. Mater. Sci. Technol., 2013, 29: 1005
[4] Talha M, Behera C K, Sinha O P.A review on nickel-free nitrogen containing austenitic stainless steels for biomedical applications[J]. Mater. Sci. Eng., 2013, C33: 3563
[5] Yamamoto A, Honma R, Sumita M.Cytotoxicity evaluation of 43 metal salts using murine fibroblasts and osteoblastic cells[J]. J. Biomed. Mater. Res., 1998, 39: 331
[6] Yang K, Ren Y B, Wan P.High nitrogen nickel-free austenitic stainless steel: A promising coronary stent material[J]. Sci. China Tech. Sci., 2011, 55: 329
[7] Yang K, Ren Y B.Nickel-free austenitic stainless steels for medical applications[J]. Sci. Technol. Adv. Mater., 2010, 11: 014105
[8] Yang K, Ren Y B.Research and development of medical stainless steels[J]. Mater. China, 2010, 29(12): 1(杨柯, 任伊宾. 医用不锈钢的研究与发展[J]. 中国材料进展, 2010, 29(12): 1)
[9] Speidel M O.Properties and applications of high nitrogen steels [A]. Proceedings of the 1st International High Nitro-gen Steels-HNS 88[C]. London: The Institute of Metals, 1989: 92
[10] Schaeffler A L.Constitutional diagram for stainless steel weld metal[J]. Met. Progr., 1949, 56: 680
[11] Hull F C.Delta ferrite and martnesite formation in stainless steels[J]. Weld. J., 1973, 52: 193
[12] Long C J, DeLong W T. The ferrite content of austenitic stainless steel weld metal[J]. Weld. J., 1973, 52: 281S.
[13] Speidel M O, Uggowitzer P J.High manganese, high nitrogen austenitic stainless steels: Their strength and toughness [A]. Proceedings of the High Manganese, High Nitrogen Austenitic Stainless Steels Conference[C]. Chicago: ASM International, 1992: 135
[14] Mudali U K, Raj B.High nitrogen steels and stainless steels: Manufacturing, properties and application[M]. Pangbourne: Alpha Science International, 2004: 50
[15] Klueh R L, Maziasz P J, Lee E H.Manganese as an austenite stabilizer in Fe-Cr-Mn-C steels[J]. Mater. Sci. Eng., 1988, A102: 115
[16] Onozuka M, Saida T, Hirai S, et al.Low-activation Mn-Cr austenitic stainless steel with further reduced content of long-lived radioactive elements[J]. J. Nucl. Mater., 1998, 255: 128
[17] Glownia J, Kalandyk B, Hübner K.Delta ferrite predictions for cast duplex steels with high nitrogen content[J]. Mater. Charact., 2001, 47: 149
[18] Wang Q C, Ren Y B, Yao C F, et al.Residual ferrite and relationship between composition and microstructure in high-nitrogen austenitic stainless steels[J]. Metall. Mater. Trans., 2015, 46A: 5537
[19] Wang Q C, Zhang B C, Yang K.Thermodynamic calculation study on effect of manganese on stability of austenite in high nitrogen stainless steels[J]. Metall. Mater. Trans., 2016, 47A: 3284
[20] Simmons J W, Strain hardening and plastic flow properties of nitrogen-alloyed Fe-17Cr-(8-10)Mn-5Ni austenitic stainless steels[J]. Acta Mater., 1997, 45: 2467
[21] Zhao H C, Ren Y B, Dong J H, et al.Effect of cold deformation on the friction-wear property of a biomedical nickel-free high-nitrogen stainless steel[J]. Acta Metal. Sin.(Engl. Lett.), 2016, 29: 217
[22] Hwang B, Lee T H, Park S J, et al.Correlation of austenite stability and ductile-to-brittle transition behavior of high-nitrogen 18Cr-10Mn austenitic steels[J]. Mater. Sci. Eng., 2011, A528: 7257
[23] Mohammadzadeh R, Akbari A, Mohammadzadeh M.Impact toughness properties of nickel- and manganese-free high nitrogen austenitic stainless steels[J]. Metall. Mater. Trans., 2016, 47A: 6032
[24] Defilippi J, Brickner K, Gilbert E.Ductile-to-brittle transition in austenitic chromium-manganese-nitrogen stainless steels[J]. Trans. Met. Soc. AIME, 1969, 245: 2141
[25] Tomota Y, Nakano J, Xia Y, et al.Unusual strain rate dependence of low temperature fracture behavior in high nitrogen bearing austenitic steels[J]. Acta Mater., 1998, 46: 3099
[26] Tomota Y, Xia Y, Inoue K.Mechanism of low temperature brittle fracture in high nitrogen bearing austenitic steels[J]. Acta Mater., 1998, 46: 1577
[27] Müllner P. On the ductile to brittle transition in austenitic steel [J]. Mater. Sci. Eng., 1997, A234-236: 94
[28] Wang S T, Yang K, Shan Y Y, et al.Plastic deformation and fracture behaviors of nitrogen-alloyed austenitic stainless steels[J]. Mater. Sci. Eng., 2008, A490: 95
[29] Tanaka M, Onomoto T, Furusho C, et al.Decrease in the brittle-to-ductile transition temperature in Cu added nickel-free austenitic stainless steels[J]. ISIJ Int., 2014, 54: 1735
[30] Ebara R.Corrosion fatigue crack initiation behavior of stainless steels[J]. Proc. Eng., 2010, 2: 1297
[31] Sudarshan T S, Srivatsan T S, Harvey II D P. Fatigue processes in metals-role of aqueous environments[J]. Eng. Fract. Mech., 1990, 36: 827
[32] Walczak J, Shahgaldi F, Heatley F.In vivo corrosion of 316L stainless-steel hip implants: Morphology and elemental compositions of corrosion products[J]. Biomaterials, 1998, 19: 229
[33] Misawa T, Tanabe H.In-situ observation of dynamic reacting species at pit precursors of nitrogen-bearing austenitic stainless steels[J]. ISIJ Int., 1996, 36: 787
[34] Olsson C O A. The influence of nitrogen and molybdenum on passive films formed on the austenoferritic stainless steel 2205 studied by AES and XPS[J]. Corros. Sci., 1995, 37: 467
[35] Ratner B D, Hoffman A S, Schoen F J, et al.Biomaterials Science: An Introduction to Materials in Medicine [M]. 2nd Ed., New York: Academic Press, 2004: 141
[36] Kumar B R, Mahato B, Singh R.Influence of cold-worked structure on electrochemical properties of austenitic stainless steels[J]. Metall. Mater. Trans., 2007, 38A: 2085
[37] Fu Y, Wu X, Han E, et al.Influence of cold work on pitting corrosion behavior of a high nitrogen stainless steel[J]. J. Electrochem. Soc., 2008, 155: C455
[38] Ren Y B, Zhao H C, Liu W P, et al.Effect of cold deformation on pitting corrosion of 00Cr18Mn15Mo2N0.86 stainless steel for coronary stent application[J]. Mater. Sci. Eng., 2016, C60: 293
[39] Wang Q C, Zhang B C, Ren Y B, et al.Eliminating detrimental effect of cold working on pitting corrosion resistance in high nitrogen austenitic stainless steels[J]. Corros. Sci., 2017, 123: 351
[40] Li M H, Yin T Y, Wang Y Z, et al.Study of biocompatibility of medical grade high nitrogen nickel-free austenitic stainless steel in vitro[J]. Mater. Sci. Eng., 2014, C43: 641
[41] Ma T C, Wan P, Cui Y Y, et al.Cytocompatibility of high nitrogen nickel-free stainless steel for orthopedic implants[J]. J. Mater. Sci. Technol., 2012, 28: 647
[42] Fini M, Nicoli A N, Torricelli P, et al.A new austenitic stainless steel with negligible nickel content: An in vitro and in vivo comparative investigation[J]. Biomaterials, 2003, 24: 4929
[43] Yu Y Q, Ding T T, Xue Y, et al.Osteoinduction and long-term osseointegration promoted by combined effects of nitrogen and manganese elements in high nitrogen nickel-free stainless steel[J]. J. Mater. Chem., 2016, 4B: 801
[44] Ren Y B, Yang K, Zhang B C.In vitro study of platelet adhesion on medical nickel-free stainless steel surface[J]. Mater. Lett., 2005, 59: 1785
[45] Wan P, Ren Y B, Zhang B C, et al.Effect of nitrogen on blood compatibility of nickel-free high nitrogen stainless steel for biomaterial[J]. Mater. Sci. Eng., 2010, C30: 1183
[46] Yang J, Black J.Competitive binding of chromium, cobalt and nickel to serum proteins[J]. Biomaterials, 1994, 15: 262
[47] K?ster R, Vieluf D, Kiehn M, et al.Nickel and molybdenum contact allergies in patients with coronary in-stent restenosis[J]. Lancet, 2000, 356: 1895
[48] Saito T, Hokimoto S, Oshima S, et al.Metal allergic reaction in chronic refractory in-stent restenosis[J]. Cardiovasc. Revasc. Med., 2009, 10: 17
[49] Li L M, Pan S, Zhou X H, et al.Reduction of in-stent restenosis risk on nickel-free stainless steel by regulating cell apoptosis and cell cycle[J]. PLoS One, 2013, 8: e62193
[50] Li L M, An L W, Zhou X H, et al.Biological behaviour of human umbilical artery smooth muscle cell grown on nickel-free and nickel-containing stainless steel for stent implantation[J]. Sci. Rep., 2016, 6: 18762
[51] Fujiu K, Manabe I, Sasaki M, et al.Nickel-free stainless steel avoids neointima formation following coronary stent implantation[J]. Sci. Technol. Adv. Mater., 2012, 13: 064218
[52] Zhang B, Chen M, Zheng B, et al.A novel high nitrogen nickel-free coronary stents system: Evaluation in a porcine model[J]. Biomed. Environ. Sci., 2014, 27: 289
[53] Wang Q C, Chen S S, Yang K, et al.In vivo study on new coronary stents made of nickel-free high-nitrogen stainless steel [A]. TMS 2017 146th Annual Meeting & Exhibition[C]. San Diego: California, USA, 2017
[54] Vlahos J, Songer M N, Davenport K.Cannulated bone screw [P]. US Pat, 8623060 B2, 2014
[55] Premier coronary stent system [EB/OL].
[1] 郑椿, 刘嘉斌, 江来珠, 杨成, 姜美雪. 拉伸变形对高氮奥氏体不锈钢显微组织和耐腐蚀性能的影响[J]. 金属学报, 2022, 58(2): 193-205.
[2] 钱漪, 袁广银. 可降解锌合金血管支架的研究现状、面临的挑战与对策思考[J]. 金属学报, 2021, 57(3): 272-282.
[3] 彭云,宋亮,赵琳,马成勇,赵海燕,田志凌. 先进钢铁材料焊接性研究进展[J]. 金属学报, 2020, 56(4): 601-618.
[4] 马政, 陆喜, 高明, 谭丽丽, 杨柯. 缝隙腐蚀对Fe-30Mn-1C合金降解速率的影响[J]. 金属学报, 2018, 54(7): 1010-1018.
[5] 东家慧, 谭丽丽, 杨柯. 可降解镁基金属骨缺损修复材料的研究探索[J]. 金属学报, 2017, 53(10): 1197-1206.
[6] 袁广银, 牛佳林. 可降解医用镁合金在骨修复应用中的研究进展[J]. 金属学报, 2017, 53(10): 1168-1180.
[7] 任伊宾, 赵浩川, 杨柯. 高氮无镍不锈钢接骨板的轻量化设计及生物力学研究:厚度减薄的影响[J]. 金属学报, 2017, 53(10): 1331-1336.
[8] 奚廷斐, 魏利娜, 刘婧, 刘小丽, 甄珍, 郑玉峰. 镁合金全降解血管支架研究进展[J]. 金属学报, 2017, 53(10): 1153-1167.
[9] 乔岩欣,王硕,刘彬,郑玉贵,李花兵,姜周华. 新型高氮钢的腐蚀和空蚀交互作用研究*[J]. 金属学报, 2016, 52(2): 233-240.
[10] 李冬杰, 陆善平, 李殿中, 李依依. 高氮钢焊缝的组织和冲击性能研究[J]. 金属学报, 2013, 49(2): 129-136.
[11] 王松涛; 杨柯; 单以银; 李来风 . 冷变形对高氮奥氏体不锈钢组织与力学行为的影响[J]. 金属学报, 2007, 43(7): 713-718 .
[12] 焦东玲; 罗承萍; 刘江文 . 高氮奥氏体的中温转变行为[J]. 金属学报, 2007, 43(4): 337-343 .
[13] 王松涛; 杨柯; 单以银; 李来风 . 高氮奥氏体不锈钢与316L不锈钢的冷变形行为研究[J]. 金属学报, 2007, 43(2): 171-176 .
[14] 陈汝淑; 刘德义; 刘世程; 刘世永 . 高氮奥氏体钢低温断面的晶体学分析[J]. 金属学报, 2007, 43(12): 1233-1238 .
[15] 刘世程; 刘德义; 戴雅康 . 高氮奥氏体钢低温断裂途径与断口形貌[J]. 金属学报, 2002, 38(10): 1042-1046 .