Please wait a minute...
金属学报  2017, Vol. 53 Issue (10): 1377-1384    DOI: 10.11900/0412.1961.2017.00267
  研究论文 本期目录 | 过刊浏览 |
冷却速率对含Cu钛合金显微组织和性能的影响
彭聪1,2, 张书源1, 任玲1(), 杨柯1
1 中国科学院金属研究所 沈阳 110016
2 中国科学技术大学材料科学与工程学院 沈阳 110016
Effect of Cooling Rate on Microstructure and Properties ofa Cu-Containing Titanium Alloy
Cong PENG1,2, Shuyuan ZHANG1, Ling REN1(), Ke YANG1
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
引用本文:

彭聪, 张书源, 任玲, 杨柯. 冷却速率对含Cu钛合金显微组织和性能的影响[J]. 金属学报, 2017, 53(10): 1377-1384.
Cong PENG, Shuyuan ZHANG, Ling REN, Ke YANG. Effect of Cooling Rate on Microstructure and Properties ofa Cu-Containing Titanium Alloy[J]. Acta Metall Sin, 2017, 53(10): 1377-1384.

全文: PDF(5025 KB)   HTML
摘要: 

研究了热处理后的冷却速率对Ti6Al4V-5Cu合金显微组织、力学性能、耐蚀性能及抗菌性能的影响。将合金分别进行不同冷却方式的热处理,即在740 ℃三相区分别进行水淬、空冷和炉冷,在820 ℃两相区和910 ℃单相区分别进行水淬。结果表明,炉冷合金由于初生α相的尺寸和体积分数最大,所以塑性最好;合金在740和820 ℃分别水淬后,由于组织中存在正交α′′相,其硬度和屈服强度显著降低;合金在910 ℃水淬后由于存在针状的hcp α′相,其硬度和抗拉强度最高,但塑性最差。随着热处理温度的升高,合金中的元素分布逐渐均匀,其耐蚀性能随之提高。改变冷却速率并不明显影响合金的抗菌性能,不同冷却速率下的合金都具有优异的抗菌性能。

关键词 含Cu钛合金显微组织力学性能耐蚀性能抗菌性能    
Abstract

The Cu-containing titanium alloy has been proved to possess excellent antibacterial performance, which has great potential for clinical application. In this work, the effect of cooling rate on the microstructure, mechanical properties, corrosion resistance and antibacterial property of a Ti6Al4V-5Cu alloy was investigated. Results showed that the furnace-cooled alloy exhibited the best ductility because of the maximum size and volume fraction of the primary α phase in microstructure. The alloys water quenched from 740 and 820 ℃ respectively demonstrated low hardness and yield strength due to the existence of orthorhombic α′′ phase in microstructure. The alloy quenched at 910 ℃ showed the highest hardness and tensile strength, but the lowest plasticity because of the presence of acicular hcp α′ phase. With the increase of heating temperature, the elemental distribution in the alloy became more uniform, and therefore the corrosion resistance increased gradually. However, the cooling rate did not obviously change the antibacterial property of the alloy. The Ti6Al4V-5Cu alloy showed excellent antibacterial property under different cooling rates.

Key wordsCu-containing titanium alloy    microstructure    mechanical property    corrosion resistance    antibacterial property
收稿日期: 2017-07-03     
ZTFLH:  R318.08  
基金资助:国家自然科学基金重点项目No.51631009,国家重点研发计划项目No.2016YFC1100600,中国科学院青年创新促进会会员项目No.2014168,广东省自然科学基金研究团队项目2015A030312004及辽宁省自然科学基金—沈阳材料科学(国家)联合实验室联合开放基金项目No.2015021004
作者简介:

作者简介 彭 聪,女,1990年生,博士生

图1  Ti6Al4V-5Cu合金以不同速率冷却后的XRD谱
图2  Ti6Al4V-5Cu合金以不同速率冷却后的SEM像
图3  Ti6Al4V-5Cu合金TEM像及EDS分析
图4  冷却速率对Ti6Al4V-5Cu合金力学性能及耐蚀性能的影响
图5  不同冷却速率下Ti6Al4V-5Cu合金的抗菌实验结果
图6  不同冷却速率下Ti6Al4V-5Cu合金的活/死细菌染色实验结果
[1] Navarro M, Michiardi A, Casta?o O, et al.Biomaterials in orthopaedics[J]. J. R. Soc. Interface, 2008, 5: 1137
[2] Arciola C R, Alvi F I, An Y H, et al.Implant infection and infection resistant materials: A mini review[J]. Int. J. Artif. Organs, 2005, 28: 1119
[3] Deysine M.Infections associated with surgical implants[J]. New Engl. J. Med., 2004, 351: 193
[4] Hu H, Zhang W, Qiao Y, et al.Antibacterial activity and increased bone marrow stem cell functions of Zn-incorporated TiO2 coatings on titanium[J]. Acta Biomater., 2012, 8: 904
[5] Zhao L Z, Wang H R, Huo K F, et al.Antibacterial nano-structured titania coating incorporated with silver nanoparticles[J]. Biomaterials, 2011, 32: 5706
[6] Ren L, Xu L, Feng J W, et al.In vitro study of role of trace amount of Cu release from Cu-bearing stainless steel targeting for reduction of in-stent restenosis[J]. J. Mater. Sci. Mater. Med., 2012, 23: 1235
[7] Liu J, Li F B, Liu C, et al.Effect of Cu content on the antibacterial activity of titanium-copper sintered alloys[J]. Mater. Sci. Eng., 2014, C35: 392
[8] Ren L, Memarzadeh K, Zhang S Y, et al.A novel coping metal material CoCrCu alloy fabricated by selective laser melting with antimicrobial and antibiofilm properties[J]. Mater. Sci. Eng., 2016, C67: 461
[9] Ren L, Ma Z, Li M, et al.Antibacterial properties of Ti-6Al-4V-xCu alloys[J]. J. Mater. Sci. Technol., 2014, 30: 699
[10] Filip R, Kubiak K, Ziaja W, et al.The effect of microstructure on the mechanical properties of two-phase titanium alloys[J]. J. Mater. Process. Technol., 2003, 133: 84
[11] Gil F J, Ginebra M P, Manero J M, et al.Formation of α-Widmanst?tten structure: Effects of grain size and cooling rate on the Widmanst?tten morphologies and on the mechanical properties in Ti6Al4V alloy[J]. J. Alloys Compd., 2001, 329: 142
[12] Osório W R, Cremasco A, Andrade P N, et al.Electrochemical behavior of centrifuged cast and heat treated Ti-Cu alloys for medical applications[J]. Electrochim. Acta, 2010, 55: 759
[13] Koike M, Cai Z, Oda Y, et al.Corrosion behavior of cast Ti-6Al-4V alloyed with Cu[J]. J. Biomed. Mater. Res., 2005, 73B: 368
[14] Kikuchi M, Takada Y, Kiyosue S, et al.Mechanical properties and microstructures of cast Ti-Cu alloys[J]. Dent. Mater., 2003, 19: 174
[15] Aoki T, Okafor I C I, Watanabe I, et al. Mechanical properties of cast Ti-6Al-4V-XCu alloys[J]. J. Oral Rehabil., 2004, 31: 1109
[16] Ma Z, Ren L, Liu R, et al.Effect of heat treatment on Cu distribution, antibacterial performance and cytotoxicity of Ti-6Al-4V-5Cu alloy[J]. J. Mater. Sci. Technol., 2015, 31: 723
[17] Cao C N.Principles of Electrochemistry of Corrosion [M]. 3rd Ed., Beijing: Chemical Industry Press, 2008: 74(曹楚南. 腐蚀电化学原理 [M]. 第3版. 北京: 化学工业出版社, 2008: 74)
[18] Matsumoto H, Yoneda H, Sato K, et al.Room-temperature ductility of Ti-6Al-4V alloy with α′ martensite microstructure[J]. Mater. Sci. Eng., 2011, A528: 1512
[19] Colins P C, Koduri S, Welk B, et al.Neural networks relating alloy composition, microstructure, and tensile properties of α/β-processed TIMETAL 6-4[J]. Metall. Mater. Trans., 2012, 44A: 1441
[20] Jovanovi? M T, Tadi? S, Zec S, et al.The effect of annealing temperatures and cooling rates on microstructure and mechanical properties of investment cast Ti-6Al-4V alloy[J]. Mater. Des., 2006, 27: 192
[21] Tarzimoghadam Z, Sandl?bes S, Pradeep K G, et al.Microstructure design and mechanical properties in a near-α Ti-4Mo alloy[J]. Acta Mater., 2015, 97: 291
[22] Sun Y, Zeng W D, Han Y F, et al.Modeling the correlation between microstructure and the properties of the Ti-6Al-4V alloy based on an artificial neural network[J]. Mater. Sci. Eng., 2011, A528: 8757
[22] Li C F, Li G P, Yang Y, et al.Influence of quenching temperature on martensite type in Ti-4Al-4.5Mo alloy[J]. Acta Metall. Sin., 2010, 46: 1061(李长富, 李阁平, 杨义等. 淬火温度对Ti-4Al-4.5Mo合金马氏体类型的影响[J]. 金属学报, 2010, 46: 1061)
[24] Jiang X J, Jing R, Ma M Z, et al.The orthorhombic α″ martensite transformation during water quenching and its influence on mechanical properties of Ti-41Zr-7.3Al alloy[J]. Intermetallics, 2014, 52: 32
[25] Yu Z T, Zhou L. Influence of martensitic transformation on mechanical compatibility of biomedical β type titanium alloy TLM [J]. Mater. Sci. Eng., 2006, A438-440: 391
[26] Moiseev V N, Polyak é V, Sokolova A Y.Martensite strengthening of titanium alloys[J]. Met. Sci. Heat Treat., 1975, 17: 687
[27] Bai Y, Gai X, Li S J, et al.Improved corrosion behaviour of electron beam melted Ti-6Al-4V alloy in phosphate buffered saline[J]. Corros. Sci., 2017, 123: 289
[28] Liu R, Memarzadeh K, Chang B, et al.Antibacterial effect of copper-bearing titanium alloy (Ti-Cu) against Streptococcus mutans and Porphyromonas gingivalis[J]. Sci. Rep., 2016, 6: 29985
[29] Zhang E L, Wang X Y, Chen M, et al.Effect of the existing form of Cu element on the mechanical properties, bio-corrosion and antibacterial properties of Ti-Cu alloys for biomedical application[J]. Mater. Sci. Eng., 2016, C69: 1210
[30] Ma Z, Ren L, Liu R, et al.Effect of heat treatment on cu distribution, antibacterial performance and cytotoxicity of Ti-6Al-4V-5Cu alloy[J]. J. Mater. Sci. Technol., 2015, 31: 723
[1] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[4] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[5] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[6] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[7] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[9] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[10] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[11] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[12] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[13] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[14] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[15] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.